Skip to main content
Log in

Invariant time-dependent exchange perturbation theory and its application to the particles collision problem

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present the formalism of time-dependent exchange perturbation theory built to all orders of perturbation, for the arbitrary time dependency of perturbation. The theory takes into account the rearrangement of electrons among centers. We show how the formalism can be reduced to the standard form of invariant perturbation theory by “switching off” the re-arrangement of electrons among centers. The elements of the scattering S-matrix and transitions T-matrix and the formula for the electron scattering differential cross section are derived. The application of the theory to scattering and collision problems is discussed. As an example, we apply the theory to proton scattering on a lithium atom, calculating the differential and total cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrikosov AA, Gor’kov LP, Dzyaloshinskiy IE (1962) Quantum field theory techniques in statistical physics. Fizmatgiz, Moscow

    Google Scholar 

  2. Davydov AS (1969) Quantum mechanics. Pergamon Press, Oxford

    Google Scholar 

  3. Wu T, Ohmura T (1962) Quantum theory of scattering

  4. Moshinsky M, Seligman TH (1971) Ann Phys 66:311

    Article  Google Scholar 

  5. Mayer I (1983) Towards a “Chemical” Hamiltonian. Int J Quantum Chem 23(3):341–363

    Article  CAS  Google Scholar 

  6. Surjan PR (1989) Second quantized approach to quantum chemistry (An elementary introduction). Springer, Berlin

    Book  Google Scholar 

  7. Orlenko EV, Rumyantsev VV (1995) The effect of particle identity on a new type of weak localization. J Phys: Condens Matter 7(18):3557–3564

    CAS  Google Scholar 

  8. Rumyantsev VV, Orlenko EV, Libenson BN (1997) Nature of coherent enhancement of inelastic electron scattering from disordered media. Zeitschrift für Physik B Condensed Matter 103(1):53–60

    Article  CAS  Google Scholar 

  9. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12974–12980

    Article  CAS  Google Scholar 

  10. Bockstedte M, Kley A, Neugebauer J, Scheffler M (1997) Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comput Phys Commun 107(1–3):187–222

    Article  CAS  Google Scholar 

  11. Fuchs M, Scheffler M (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput Phys Commun 119(1):67–98

    Article  CAS  Google Scholar 

  12. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. Phys Chem Chem Phys 12(39):12811–12825

    Article  CAS  Google Scholar 

  13. Salvador P, Mayer I (2004) Second-order Moller-Plesset perturbation theory without basis set superposition error. II. Open-shell systems. J Chem Phys 120(13):5882–5889

    Article  CAS  Google Scholar 

  14. Mammino L, Kabanda MM (2009) A study of the intramolecular hydrogen bond in acylphloroglucinols. Theochem-J Mol Struct 901(1–3):210–219

    Article  CAS  Google Scholar 

  15. Kaplan IG (2006) Intermolecular interactions: physical picture, computational methods, and model potentials. Wiley, New York

    Book  Google Scholar 

  16. Orlenko EV, Rumyantsev AA (1990) Perturbation theory for intercenter electron exchange and superexchange with degeneracy. J Exp Theor Phys 97(2):439–448

    CAS  Google Scholar 

  17. Orlenko EV, Latychevskaia T (1998) The method of exchange perturbation theory as applied to magnetic ordering in high-Tc materials. J Exp Theor Phys 86(6):1167–1176

    Article  Google Scholar 

  18. Orlenko EV, Orlova TS, Orlenko FE, Zegrya GG (2011) Exchange perturbation theory for multiatomic electron system and its application to spin arrangement in manganite chains. Adv Phys Chem 2011:868610

    Article  Google Scholar 

  19. Orlenko EV, Ershova EV, Orlenko FE (2013) Invariant exchange perturbation theory for multicenter systems and its application to the calculation of magnetic chains in manganites. J Exp Theor Phys 117(4):674–690

    Article  CAS  Google Scholar 

  20. Orlenko EV, Matisov BG (1999) Superexchange pairing and magnetic ordering in cuprate superconductors. Phys Solid State 41(12):1951–1955

    Article  CAS  Google Scholar 

  21. Rumyantsev AA, Orlenko EV (1990) Time-dependent exchange perturbation theory. Sov Phys Tech Phys 35:409–413

    Google Scholar 

  22. Orlenko EV, Matisov BG (2000) Exchange-induced self-polarization of an electron beam. Tech Phys Lett 26(9):806–809

    Article  CAS  Google Scholar 

  23. Orlenko EV, Matisov BG (2006) Coherent amplification of beams of atoms inelastically scattered by the Bose-Einstein condensate. Tech Phys 51(1):1–10

    Article  CAS  Google Scholar 

  24. Ritchie AB (1968) Perturbation theory for exchange interactions between atoms and molecules I. Phys Rev 171(1):125–127

    Article  CAS  Google Scholar 

  25. Rumyantsev AA (1973) Perturbation theory with allowance for exchange forces. J Exp Theor Phys 65(3):926

    Google Scholar 

  26. Kaplan IG (1975) Symmetry of many-electron systems. Academic, New York

    Google Scholar 

  27. Orlenko EV, Evstafev AV, Orlenko FE (2015) Invariant exchange perturbation theory for multicenter systems: time-dependent perturbations. J Exp Theor Phys 120(2):296–311. (Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 147(2):338–355)

  28. Flurry RL Quantum chemistry. An introduction. Prentice-Hall, Englewood Cliffs

  29. Gombas P, Szondy T (1970) Solutions of the simple self-consistent field for atoms. Acad. Kiodo, Budapest

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Orlenko.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Appendices

Appendix 1

We apply \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} = 1 - \left| {\varPsi_{i}^{0} } \right\rangle \left( {\left. {\varPhi_{i} } \right|} \right.\) to both sides of equation Eq. 12:

$$- \frac{\hbar }{i}\left| {\dot{\varPsi }^{\left( 1 \right)} \left( t \right)} \right\rangle = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H}_{0} \left| {\varPsi^{\left( 1 \right)} \left( t \right)} \right\rangle + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \left( t \right)\left| {\varPsi_{i}^{0} } \right\rangle$$
(70)

where we use the expansion given by Eq. 13:

$$\left| {\varPsi^{\left( 1 \right)} \left( t \right)} \right\rangle = \sum\limits_{n} {C_{n} \left( t \right)\exp \left( { - \frac{i}{\hbar }E_{n} t} \right)\left| {\varPsi_{n}^{0} } \right\rangle }$$
(71)

The resulting equation can now be written as

$$- \frac{\hbar }{i}\sum\limits_{n} {\dot{C}_{n} \left( t \right)\exp \left( { - \frac{i}{\hbar }E_{n} t} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \left| {\varPsi_{n}^{0} } \right\rangle } = \exp \left( { - \frac{i}{\hbar }E_{i} t} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \left| {\varPsi_{i}^{0} } \right\rangle ,$$
(72)

where prime denotes that the term with n = i is excluded.

Next, we use the completeness property of the antisymmetrized basis (see Eq. 4) and rewrite the right side of Eq. 72 as

$$\exp \left( { - \frac{i}{\hbar }E_{i} t} \right) \cdot \frac{{f_{0} }}{P}\sum\limits_{n} {\left| {\varPsi_{n}^{0} } \right\rangle \left( {\left. {\varPhi_{n}^{0(0)} } \right|\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \left| {\varPsi_{i}^{0} } \right\rangle } \right.}$$
(73)

Because \(\left( {\varPhi_{i}^{0(0)} } \right.\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} } \right. = \left( {\left. {\varPhi_{i}^{0(0)} } \right|} \right. - \left( {\varPhi_{i}^{0(0)} \left| {\varPsi^{0}_{i} } \right\rangle } \right.\left( {\left. {\varPhi_{i}^{0(0)} } \right|} \right. \equiv 0\), the term at n = i, is excluded, which is signified by the prime on the summation sign.

Rearranging Eq. 72, we obtain

$$\sum\limits_{n} {\left\{ { - \frac{\hbar }{i}\dot{C}_{n} \left( t \right) - \frac{{f_{0} }}{P}\left( {\varPhi_{n}^{0(0)} \left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \left| {\varPsi_{i}^{0} } \right\rangle \exp \left( { - i\omega_{in} t} \right)} \right.} \right.} \right\}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \left| {\varPsi_{n}^{0} } \right\rangle } = 0.$$
(74)

The last equation is fulfilled when the expression in the curly brackets equals zero for all n. This, in turn, leads to an equation for \(\dot{C}_{n} \left( t \right)\):

$$- \frac{\hbar }{i}\dot{C}_{n} \left( t \right) = \frac{{f_{0} }}{P}\exp \left( { - i\omega_{ni} t} \right)\left( {\left. {\varPhi_{n}^{0(0)} } \right|\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{O}_{i} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V} \left| {\varPsi_{i}^{0} } \right\rangle } \right.,$$
(75)

where we introduced \(\frac{1}{\hbar }\left( {E_{i} - E_{n} } \right) = \omega_{in} .\)

Appendix 2

Operator \(\hat{T}\) satisfies Eq. 48:

$$\hat{T} = V_{0}^{\mathbb{N}} + V_{0}^{\mathbb{N}} \left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)^{ - 1} \hat{T},$$
(76)

which can be re-arranged to:

$$V_{0}^{\mathbb{N}} = \left( {\hat{1} - V_{0}^{\mathbb{N}} \left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)^{ - 1} } \right)\hat{T}$$
$$V_{0}^{\mathbb{N}} = \left( {\left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right) - V_{0}^{\mathbb{N}} } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)^{ - 1} \hat{T}.$$
(77)

Taking into account that the total Hamiltonian of the system

$$H = H_{p = 0}^{0} + V_{p = 0} = H_{p}^{0} + V_{p} ,$$
(78)

is invariant with respect to permutations of electrons between atoms:

$$H = H_{0}^{p = 0} + V^{p = 0} = - \frac{{\hbar^{2} }}{{2\mu_{i} }}\nabla_{i}^{2} + H_{i}^{p = 0} (r_{1} ,r_{2} , \ldots )_{i} + V^{p = 0} .$$
(79)

We further re-arrange Eq. 77:

$$V_{0}^{\mathbb{N}} = \left( {E_{i} - H + i\eta } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)^{ - 1} \hat{T}$$
$$\left( {\frac{{f_{0}^{2} }}{P}} \right)\left( {E_{i} - H_{p = 0}^{0} + i\eta } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H + i\eta } \right)^{ - 1} V_{0}^{\mathbb{N}} = \hat{T}$$
$$\left( {\frac{{f_{0}^{2} }}{P}} \right)\left( {E_{i} - H_{p = 0}^{0} + V_{0} - V_{0} + i\eta } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H + i\eta } \right)^{ - 1} V_{0}^{\mathbb{N}} = \hat{T}$$
$$\begin{aligned} &V_{0}^{\mathbb{N}} \left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H + i\eta } \right)^{ - 1} V_{0}^{\mathbb{N}} \hfill \\ &+ \left( {\frac{{f_{0}^{2} }}{P}} \right)\left( {E_{i} - H_{p = 0}^{0} - V_{0} + i\eta } \right)\left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H + i\eta } \right)^{ - 1} V_{0}^{\mathbb{N}} = \hat{T} \hfill \\ \end{aligned}$$

to the final expression for operator \(\hat{T}\):

$$V_{0}^{\mathbb{N}} \left( {\frac{{f_{0}^{2} }}{P}} \right)^{ - 1} \left( {E_{i} - H + i\eta } \right)^{ - 1} V_{0}^{\mathbb{N}} + V_{0}^{\mathbb{N}} = \hat{T}.$$
(80)

Appendix 3

The initial states of the electrons in the Lithium atom are given by [28] where the parameters α and β are taken from [29]

$$\begin{aligned} \phi_{1s} (\vec{R} - \vec{r}_{i} ) & = (\alpha_{1}^{3} /\pi )^{1/2} \exp \,( - \alpha_{1} |\vec{R} - \vec{r}_{i} |),\quad \, i = 1,2 \\ \varphi_{{2s^{1} }} (\vec{R} - \vec{r}_{3} ) & = (\alpha_{2}^{3} /8\pi )^{1/2} (1 - 0.5\alpha_{2} |\vec{R} - \vec{r}_{3} |)\exp \,( - 0.5\alpha_{2} |\vec{R} - \vec{r}_{3} |), \end{aligned}$$
(81)

\(\text{where} \,\alpha_{1} = 2.698,\alpha_{2} = 0.795.\)

The final states of the electrons in the Helium-like Lithium ion are described by

$$\begin{aligned} &\phi^{*}(\vec{R} - \vec{r}_{i} ) = (\alpha ^{*3} /\pi )^{1/2} \exp ( - \alpha ^{*}|\vec{R} - \vec{r}_{i} |),\quad i = 1,2 \\ &{\text{where}}\;\alpha ^{*} = 1.692. \\ \end{aligned}$$
(82)

The final state of the electron in the Hydrogen atom is described by the single-electron wavefunction:

$$\begin{aligned} &\psi_{H} (r) = (\pi )^{ - 1/2} \exp \left( { - \beta r} \right); \\ &\beta = 1 \\ \end{aligned}$$
(83)

Here, α, α*, and β are given in reciprocal Bohr radius units, and R is in Bohr radius units.

The first-order correction to the S-matrix elements given by Eq. 31 becomes:

$$\begin{aligned} \left\langle {\Psi _{f}^{0} } \right|V_{0} ^{\mathbb{N}} \left| {\left. {\Phi _{i}^{0} } \right)} \right. & = \frac{1}{{f_{0} }}\frac{1}{{f_{{{\text{Li}}}} }}\left( {\sqrt 3 \left\langle {\Psi _{1} (\vec{r}_{1} ,\vec{r}_{2} ,\vec{r}_{3} )} \right|V_{0} ^{\mathbb{N}} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} \left| {\left. {\Psi _{{{\text{Li}}1}} (\vec{r}_{1} ,\vec{r}_{2} ,\vec{r}_{3} )} \right)} \right.} \right. \\ & \quad + \frac{3}{2}\left\langle {\Psi _{2} (\vec{r}_{1} ,\vec{r}_{2} ,\vec{r}_{3} )} \right|V_{0} ^{\mathbb{N}} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} \left| {\left. {\Psi _{{{\text{Li}}2}} (\vec{r}_{1} ,\vec{r}_{2} ,\vec{r}_{3} )} \right)} \right. \\ & = \frac{4}{{\sqrt 3 }}\frac{1}{P}\frac{{f_{0} }}{{f_{{{\text{Li}}}} }}\left\{ {\left\langle {\Phi _{{{\text{Li}}^{ + } }} (\vec{R} - \vec{r}_{1} ,\vec{R} - \vec{r}_{2} )\Phi _{H} (\vec{r}_{3} )} \right|V_{0} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} } \right. \\ \quad \left| {\left. {(\phi _{{1s}} (\vec{R} - \vec{r}_{1} )\phi _{{1s}} (\vec{R} - \vec{r}_{2} )\varphi _{{2s}} (\vec{R} - \vec{r}_{3} )} \right)} \right. \\ & \quad - \left\langle {\Phi _{{{\text{Li}}^{ + } }} (\vec{R} - \vec{r}_{1} ,\vec{R} - \vec{r}_{2} )\Phi _{H} (\vec{r}_{3} )} \right|V_{0} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} \left| {\left. {\phi _{{1s}} (\vec{R} - \vec{r}_{3} )\phi _{{1s}} (\vec{R} - \vec{r}_{2} )\varphi _{{2s}} (\vec{R} - \vec{r}_{1} ))} \right)} \right. \\ & \quad - \left\langle {\Phi _{{{\text{Li}}^{ + } }} (\vec{R} - \vec{r}_{3} ,\vec{R} - \vec{r}_{2} )\Phi _{H} (\vec{r}_{1} )} \right|V_{0} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} \left| {\left. {(\phi _{{1s}} (\vec{R} - \vec{r}_{1} )\phi _{{1s}} (\vec{R} - \vec{r}_{2} )\varphi _{{2s}} (\vec{R} - \vec{r}_{3} )} \right)} \right. \\ & \quad + \left. {\left\langle {\Phi _{{{\text{Li}}^{ + } }} (\vec{R} - \vec{r}_{3} ,\vec{R} - \vec{r}_{2} )\Phi _{H} (\vec{r}_{1} )} \right|V_{0} \text{e} ^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}_{{I,II}} } \right)}} \left| {\left. {\phi _{{1s}} (\vec{R} - \vec{r}_{3} )\phi _{{1s}} (\vec{R} - \vec{r}_{2} )\varphi _{{2s}} (\vec{R} - \vec{r}_{1} ))} \right)} \right.} \right\} \\ \end{aligned}$$
(84)

where we used the orthogonality of the spin parts of the wavefunctions.

The matrix element 〈Ψ 0 f |V 0|Φ 0 i ). in Eq. 64 can be rewritten as

$$\begin{aligned} \left\langle {\varPsi_{f}^{0} } \right|V_{0} \left| {\left. {\varPhi_{i}^{0} } \right)} \right. & = \frac{4}{\sqrt 3 }\frac{1}{P}\frac{{f_{0} }}{{f_{\text{Li}} }}\int {d^{3} R} \text{e}^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}} \right)}} \left\{ {\varDelta_{1s^{*}1s} \left[ {\left( {\frac{6}{R}\varDelta_{1s^{*}1s} S_{1s'2s} - 2A_{1s'2s} \varDelta_{1s^{*}1s} - 4K_{1s^{*}1s} S_{1s'2s} } \right)} \right.} \right. \\ & \quad - \left. {\left( {S_{1s'2s} \left(\frac{3}{R}\varDelta_{1s^{*}1s} - K_{1s^{*}1s} - K_{1s^{*}2s} \right) - A_{1s'1s} \varDelta_{1s^{*}2s} } \right)} \right] \\ & \quad - \left. {\varDelta_{1s^{*}1s} \varDelta_{1s^{*}2s} \left( {\frac{{3S_{1s'1s} }}{R} - A_{1s'1s} } \right) + S_{1s'1s} \left( {K_{1s^{*}1s} \varDelta_{1s^{*}2s} + K_{1s^{*}2s} \varDelta_{1s^{*}1s} } \right)} \right\}, \\ \end{aligned}$$
(85)

where we introduced the following symbols for integrals

$$\begin{array}{*{20}l} {\varDelta_{1s^{*}1s} = \left\langle {\phi ^{*}} \right|\left. {\phi_{{1s^{1} }} } \right\rangle } \hfill \\ {\varDelta_{1s^{*}2s} = \left\langle {\phi ^{*}} \right|\left. {\phi_{{2s^{1} }} } \right\rangle } \hfill \\ {S_{1s'1s} = \left\langle {\psi_{He^{*}} (\vec{r})} \right|\left. {\phi_{1s} (\vec{R} - \vec{r})} \right\rangle } \hfill \\ {S_{1s'2s} = \left\langle {\psi_{He^{*}} (\vec{r})} \right|\left. {\phi_{2s} (\vec{R} - \vec{r})} \right\rangle } \hfill \\ \end{array} ,\quad \begin{array}{*{20}l} {K_{1s^{*}1s} = \left\langle {\phi ^{*}} \right|\frac{1}{r}\left| {\phi_{{1s^{1} }} } \right\rangle } \hfill \\ {K_{1s^{*}2s} = \left\langle {\phi ^{*}} \right|\frac{1}{r}\left| {\phi_{{2s^{1} }} } \right\rangle } \hfill \\ {A_{1s'1s} = \left\langle {\psi_{{{\text{He}}^{*}}} (\vec{r})} \right|\frac{1}{r}\left| {\phi_{1s} (\vec{R} - \vec{r})} \right\rangle } \hfill \\ {A_{1s'2s} = A_{1s'1s} = \left\langle {\psi_{{{\text{He}}^{*}}} (\vec{r})} \right|\frac{1}{r}\left| {\phi_{2s} (\vec{R} - \vec{r})} \right\rangle .} \hfill \\ \end{array}$$
(86)

All these integrals have analytical expressions, and they are listed below.

The normalization factor in Eq. 64 is found as follows:

$$\begin{aligned} f_{0} & = \frac{4}{3} \times \left\langle {4\phi ^{*}(\vec{R} - \vec{r}_{1} ) \cdot \phi ^{*}(\vec{R} - \vec{r}_{2} ) \cdot \psi_{He^{*}} (r_{3} ) - } \right.3\phi ^{*}(\vec{R} - \vec{r}_{1} ) \\ & \quad \cdot \phi ^{*}(\vec{R} - \vec{r}_{3} ) \cdot \psi_{He^{*}} (r_{2} ) - \phi ^{*}(\vec{R} - \vec{r}_{3} ) \cdot \phi ^{*}(\vec{R} - \vec{r}_{2} ) \cdot \left. {\psi_{He^{*}} (r_{1} )} \right| \\ & \quad \left| {\text{e}^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}} \right)}} (\phi_{1s} (\vec{R} - \vec{r}_{1} )\phi_{1s} (\vec{R} - \vec{r}_{2} )\varphi_{2s} (\vec{R} - \vec{r}_{3} ) - \phi_{1s} (\vec{R} - \vec{r}_{3} )\phi_{1s} (\vec{R} - \vec{r}_{2} )\varphi_{2s} (\vec{R} - \vec{r}_{1} ))} \right\rangle \\ & = \frac{20}{3}\int {d^{3} R\text{e}^{{\left( {i(\vec{k}_{f} - \vec{k}_{i} ) \cdot \vec{R}} \right)}} } \{ \varDelta_{1s^{*}1s} \varDelta_{1s^{*}1s} S_{1s'2s} - \varDelta_{1s^{*}1s} \varDelta_{1s^{*}2s} S_{1s'1s} \} \\ \end{aligned}$$
(87)
$$\begin{aligned} \varDelta_{1s^{*}1s} & = \left\langle {\phi ^{*}} \right|\left. {\phi_{{1s^{1} }} } \right\rangle = \frac{{8\left( {\alpha \alpha ^{*}} \right)^{3/2} }}{{\left( {\alpha + \alpha ^{*}} \right)^{3} }} \\ \varDelta_{1s^{*}2s} & = \left\langle {\phi ^{*}} \right|\left. {\phi_{{2s^{1} }} } \right\rangle = \frac{{8\left( {\frac{\alpha }{2}\alpha ^{*}} \right)^{3/2} }}{{\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)^{3} }}\left( {1 - \frac{3\alpha }{\alpha + 2\alpha ^{*}}} \right) \\ S_{1s'1s} & = \left\langle {\psi_{He^{*}} (\vec{r})} \right|\left. {\phi_{1s} (\vec{R} - \vec{r})} \right\rangle \\ &= \frac{{8\left( {\alpha \beta } \right)^{3/2} }}{{\beta^{2} - \alpha^{2} }}{\text{sh}}\left[ {\frac{R}{2}(\alpha - \beta )} \right]e^{{ - \frac{R}{2}(\alpha + \beta )}} \\ & \quad \times\left( {\frac{1}{\alpha + \beta }} \right. + \frac{{{\text{cth}}\frac{R}{2}(\alpha - \beta )}}{\alpha - \beta } - \left. {\frac{8\alpha \beta }{{R\left( {\alpha^{2} - \beta^{2} } \right)^{2} }}} \right) \\ \end{aligned}$$
(88)
$$\begin{aligned} S_{1s'2s} & = \left\langle {\psi_{He^{*}} (\vec{r})} \right|\left. {\phi_{2s} (\vec{R} - \vec{r})} \right\rangle = \frac{{\left( {\alpha \beta } \right)^{3/2} }}{\sqrt 2 }\frac{{R \cdot {\text{sh}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]e^{{ - \frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)}} }}{{\beta^{2} - \left( {\frac{\alpha }{2}} \right)^{2} }} \\ & \quad \times \left\{ {\frac{4}{{R\left( {\frac{\alpha }{2} + \beta } \right)}}\frac{8\alpha \beta }{{R^{2} \left( {\left( {\frac{\alpha }{2}} \right)^{2} - \beta^{2} } \right)^{2} }}} \right. + \frac{{4{\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]}}{{R\left( {\frac{\alpha }{2} - \beta } \right)}} \\ & \quad - \frac{{\alpha \left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{R\left( {\frac{\alpha }{2} + \beta } \right)}} - \frac{{2\alpha \left( {3 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{R\left( {\frac{\alpha }{2} + \beta } \right)^{2} }} \\ & \quad - \frac{12\alpha }{{R^{2} \left( {\left( {\frac{\alpha }{2}} \right) + \beta } \right)^{3} }} + \frac{12\alpha }{{R^{2} \left( {\left( {\frac{\alpha }{2}} \right) - \beta } \right)^{3} }} + \frac{{\alpha \left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{R\left( {\frac{\alpha }{2} - \beta } \right)}} \\ & \quad - \frac{{2\alpha \left( {1 + {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{R\left( {\left( {\frac{\alpha }{2}} \right)^{2} - \beta^{2} } \right)}} + \left. {\frac{{2\alpha \left( {1 - 3{\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{R\left( {\frac{\alpha }{2} - \beta } \right)^{2} }}} \right\} \\ \end{aligned}$$
(89)
$$\begin{aligned} K_{1s^{*}1s} = & \left\langle {\phi ^{*}\left| \frac{1}{r} \right|\phi_{{1s^{1} }} } \right\rangle = \frac{{4\left( {\alpha \alpha ^{*}} \right)^{3/2} }}{{\left( {\alpha + \alpha ^{*}} \right)^{2} }}{\text{sh}}\left[ {\frac{R}{2}(\alpha + \alpha ^{*})} \right]e^{{ - \frac{R}{2}(\alpha + \alpha ^{*})}} \\ & \quad \times \left( {1 + \frac{4}{{R\left( {\alpha + \alpha ^{*}} \right)}} - {\text{cth}}\left[ {\frac{R}{2}(\alpha + \alpha ^{*})} \right]} \right) \\ \end{aligned}$$
(90)
$$\begin{aligned} A_{1s'1s} & = \left\langle {\psi_{He^{*}} (\vec{r})} \right|\frac{1}{r}\left| {\phi_{1s} (\vec{R} - \vec{r})} \right\rangle = \frac{{4\left( {\alpha \beta } \right)^{3/2} }}{{\left( {\alpha^{2} - \beta^{2} } \right)}}{\text{sh}}\left[ {\frac{R}{2}(\alpha - \beta )} \right]e^{{ - \frac{R}{2}(\alpha + \beta )}} \\ & \quad \times\left( {1 + \frac{4\alpha }{{R\left( {\alpha^{2} - \beta^{2} } \right)}} - {\text{cth}}\left[ {\frac{R}{2}(\alpha - \beta )} \right]} \right) \\ \end{aligned}$$
$$\begin{aligned} K_{{1s^{*}2s}} & = \left\langle {\phi ^{*}} \right|\frac{1}{r}\left| {\phi _{{2s^{1} }} } \right\rangle = \frac{{\sqrt 2 \left( {\alpha \alpha ^{*}} \right)^{{3/2}} }}{{\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)^{2} }}{\text{sh}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)} \right]e^{{ - \frac{R}{2}\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)}} \\ & \quad \times \left( {1 + \frac{4}{{R\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)}} - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)} \right] - \frac{{R\alpha }}{2}\left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)} \right]} \right)} \right. \\ & \left. {\quad - \frac{{2\alpha \left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)} \right]} \right)}}{{\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)}} - \frac{{6\alpha }}{{R\left( {\frac{\alpha }{2} + \alpha ^{*}} \right)^{2} }}} \right) \\ A_{{1s'2s}} & = A_{{1s'1s}} = \left\langle {\psi _{{He^{*}}} (\vec{r})\left| {\frac{1}{r}} \right|\phi _{{2s}} (\vec{R} - \vec{r})} \right\rangle = \frac{{\sqrt 2 \left( {\alpha \beta } \right)^{{3/2}} }}{{\left( {\frac{\alpha }{2}} \right)^{2} - \beta ^{2} }}{\text{sh}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]e^{{ - \frac{R}{2}\left( {\frac{\alpha }{2} + \beta } \right)}} \\ & \quad \times \left\{ {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right] - \frac{{R\alpha }}{2}\left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right) - \frac{{\alpha \left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{\left( {\frac{\alpha }{2} + \beta } \right)}}} \right. \\ & \left. {\quad - \frac{{\alpha \left( {1 - {\text{cth}}\left[ {\frac{R}{2}\left( {\frac{\alpha }{2} - \beta } \right)} \right]} \right)}}{{\left( {\frac{\alpha }{2} - \beta } \right)}} - \frac{{2\alpha }}{{R\left( {\frac{\alpha }{2} + \beta } \right)^{2} }} - \frac{{2\alpha }}{{R\left( {\frac{\alpha }{2} - \beta } \right)^{2} }}} \right\} \\ \end{aligned}$$
(91)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlenko, E.V., Latychevskaia, T., Evstafev, A.V. et al. Invariant time-dependent exchange perturbation theory and its application to the particles collision problem. Theor Chem Acc 134, 54 (2015). https://doi.org/10.1007/s00214-015-1646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1646-2

Keywords

Navigation