Skip to main content
Log in

“Elastic” fluctuation-induced effects in smectic wetting films

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Li-Kardar field theory approach is generalized to wetting smectic films and the “elastic” fluctuation-induced interaction is obtained between the external flat bounding surface and distorted IA (isotropic liquid-smectic A) interface acting as an “internal” (bulk) boundary of the wetting smectic film under the assumption that the IA interface is essentially “softer” than the surface smectic layer. This field theory approach allows calculating the fluctuation-induced corrections in Hamiltonians of the so-called “correlated” liquids confined by two surfaces, in the case where one of the bounding surfaces is “rough” and with different types of surface smectic layer anchoring. We obtain that in practice, the account of thermal displacements of the smectic layers in a wetting smectic film reduces to the addition of two contributions to the IA interface Hamiltonian. The first, so-called local contribution describes the long-range thermal “elastic” repulsion of the fluctuating IA interface from the flat bounding surface. The second, so-called nonlocal contribution is connected with the occurrence of an “elastic” fluctuation-induced correction to the stiffness of the IA interface. An analytic expression for this correction is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Ocko, A. Braslau, P. S. Pershan, J. Als-Nielsen, and M. Deutsch, Phys. Rev. Lett. 57, 94 (1986).

    Article  ADS  Google Scholar 

  2. J. Als-Nielsen, Physica A (Amsterdam) 140, 376 (1986).

    ADS  Google Scholar 

  3. P. S. Pershan, Colloq. Phys. 50(C7), 1 (1989).

    Google Scholar 

  4. R. Lucht, Ch. Bahr, and G. Heppke, J. Phys. Chem. B 102, 6861 (1998).

    Article  Google Scholar 

  5. R. Lucht, Ch. Bahr, and G. Heppke, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2324 (2000).

    Google Scholar 

  6. B. M. Ocko, Phys. Rev. Lett. 64, 2160 (1990).

    Article  ADS  Google Scholar 

  7. G. Iannacchione, J. T. Mang, S. Kumar, and D. Finotello, Phys. Rev. Lett. 73, 2708 (1994).

    Article  ADS  Google Scholar 

  8. E. S. Pikina and V. E. Podnek, in Theses of the Fifth International Liquid Matter Conference, Konstanz, Germany, 2002 (Konstanz, 2002); E. S. Pikina, PhD Thesis (Institute of Solid State Physics, Chernogolovka, Moscow region, Russia, 2002 (Chernogolovka, 2002); E. S. Pikina and V. E. Podnek, in Theses of the 20th International Liquid Crystal Conference, (SURF-P090), Ljubljana, Slovenia, 2004 (Ljubljana, 2004); E. S. Pikina and V. E. Podnek, in Theses of the Sixth International Liquid Matter Conference, Utrecht, The Netherlands, 2005 (Utrecht, 2005); E. S. Pikina and V. E. Podnek, private communication.

  9. L. V. Mikheev, Zh. Éksp. Teor. Fiz. 96(2), 632 (1989) [Sov. Phys. JETP 69 (2), 358 (1989)].

    Google Scholar 

  10. M. J. de Olivera and R. B. Griffiths, Surf. Sci. 71, 687 (1978).

    Article  Google Scholar 

  11. Y. Saito, Z. Phys. B: Condens. Matter Quanta 32, 75 (1978).

    Article  ADS  Google Scholar 

  12. J. D. Weeks, Phys. Rev. B: Condens. Matter 26, 3998 (1982).

    ADS  Google Scholar 

  13. E. Brézin, B. I. Halperin, and S. Leibler, J. Phys. (Paris) 44, 775 (1983).

    Google Scholar 

  14. D. A. Huse, Phys. Rev. B: Condens. Matter 30, 1371 (1984).

    MathSciNet  ADS  Google Scholar 

  15. D. S. Fisher and D. A. Huse, Phys. Rev. B: Condens. Matter 32, 247 (1985).

    ADS  Google Scholar 

  16. P. Noziéres and F. Gallet, J. Phys. (Paris) 48, 353 (1987).

    Google Scholar 

  17. A. Ajdari, L. Peliti, and J. Prost, Phys. Rev. Lett. 66, 1481 (1991).

    Article  ADS  Google Scholar 

  18. H. Li and M. Kardar, Phys. Rev. Lett. 67, 3275 (1991).

    Article  ADS  Google Scholar 

  19. H. Li and M. Kardar, Phys. Rev. A: At., Mol., Opt. Phys. 46, 6490 (1992).

    ADS  Google Scholar 

  20. P. G. de Gennes and J. Prost, Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1986; Butterworth—Heinemann, Oxford, 1986).

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1988; Butterworth—Heinemann, Oxford, 1989).

    Google Scholar 

  23. G. Grinstein and R. A. Pelcovits, Phys. Rev. A: At., Mol., Opt. Phys. 26, 915 (1982).

    ADS  Google Scholar 

  24. M. L. Lyra, M. Kardar, and N. F. Svaiter, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 47, 3456 (1993).

    Google Scholar 

  25. M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).

    Article  ADS  Google Scholar 

  26. A. Hanke and M. Kardar, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 046 121 (2002).

    Google Scholar 

  27. V. V. Lebedev, Fluctuation Effects in Macrophysics (MTsNMO, Moscow, 1994) [in Russian].

    Google Scholar 

  28. B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang, and M. Deutsch, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 3164 (1997).

    Google Scholar 

  29. H. Marynissen, J. Thoen, and W. van Dael, Mol. Cryst. Liq. Cryst. 97, 149 (1983).

    Article  Google Scholar 

  30. J. Bechhoefer, L. Lejcek, and P. Oswald, J. Phys. II 2, 27 (1992).

    Article  Google Scholar 

  31. L. Lejcek, J. Bechhoefer, and P. Oswald, J. Phys. II 2, 1511 (1992).

    Article  Google Scholar 

  32. L. Lejcek and P. Oswald, J. Phys. II 1, 931 (1991).

    Article  Google Scholar 

  33. R. Lucht, Ch. Bahr, G. Heppke, and J. W. Goodby, J. Chem. Phys. 108, 3716 (1998).

    Article  ADS  Google Scholar 

  34. R. Lucht, P. Marczuk, Ch. Bahr, and G. H. Findenegg, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 041 704 (2001).

    Google Scholar 

  35. G. J. Kellogg, P. S. Pershan, E. H. Kawamoto, W. Foster, Moshe Deutsch, and B. M. Ocko, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 51, 4709 (1995).

    Google Scholar 

  36. A. Böttger, D. Frenkel, J. G. H. Joosten, and G. Krooshof, Phys. Rev. A: At., Mol., Opt. Phys. 38, 6316 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Pikina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikina, E.S. “Elastic” fluctuation-induced effects in smectic wetting films. J. Exp. Theor. Phys. 109, 885–898 (2009). https://doi.org/10.1134/S1063776109110168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109110168

Keywords

Navigation