Skip to main content
Log in

Weak anchoring effects in smectic-A Fréedericksz transitions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In smectic-A (SmA) liquid crystals, rod-like molecules are organized into layers with their optical axis oriented along the normal to these layers. When subject to an external field and for a certain critical threshold, these layers can buckle into a new different configuration. Here, we consider SmA liquid crystals which are confined between two parallel plates aligned in the so-called bookshelf geometry and subject to an external magnetic field. By assuming that instability is induced by a uniform field, we investigate the influence of the anchoring strength on the critical threshold field and on the layers shape by a perturbative analysis to the equilibrium equations. Main differences with respect to the standard Fréedericksz transition of nematics are highlighted. The behavior of this threshold effect suggests a new way to measure geometrical and constitutive parameters of a SmA sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aursand, P., Napoli, G., Ridder, J.: On the dynamics of the weak Freedericksz transition for nematic liquid crystals. Commun. Comput. Phys. 20(5), 1359–1380 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bevilacqua, G., Napoli, G.: Reexamination of the Helfrich–Hurault effect in smectic-\(a\) liquid crystals. Phys. Rev. E 72(4), 041708 (2005)

    Article  Google Scholar 

  3. Bevilacqua, G., Napoli, G.: Parity of the weak Fréedericksz transition. Eur. Phys. J. E 35(12), 133 (2012)

    Article  Google Scholar 

  4. Clark, N.A., Meyer, R.B.: Strain-induced instability of monodomain smectic \(a\) and cholesteric liquid crystals. Appl. Phys. Lett. 22(10), 493–494 (1973)

    Article  Google Scholar 

  5. De Vita, R., Stewart, I.W.: Influence of weak anchoring upon the alignment of smectic a liquid crystals with surface pretilt. J. Phys. Condens. Matter 20(33), 335101 (2008)

    Article  Google Scholar 

  6. de Gennes, P., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1993)

    Google Scholar 

  7. De Pascalis, R.: Mechanically induced Helfrich–Hurault effect in a confined lamellar system with finite surface anchoring. Phys. Rev. E 100(1), 012705 (2019)

    Article  Google Scholar 

  8. Deuling, H.: Deformation of nematic liquid crystals in an electric field. Mol. Cryst. Liq. Cryst. 19, 123 (1972)

    Article  Google Scholar 

  9. Elias, F., Flament, C., Bacri, J.C., Neveau, S.: Macro-organized patterns in ferrofluid layer: experimental studies. J. Phys. I 7, 711 (1997)

    Google Scholar 

  10. Elston, S.J.: Smectic-A Fréedericksz transition. Phy. Rev. E 58(2), R1215–R1217 (1998)

    Article  Google Scholar 

  11. García-Cervera, C.J., Joo, S.: Analytic description of layer undulations in smectic a liquid crystals. Arch. Ration. Mech. Anal. 203(1), 1–43 (2012)

    Article  MathSciNet  Google Scholar 

  12. Helfrich, W.: Deformation of cholesteric liquid crystals with low threshold voltage. Appl. Phys. Lett. 17(12), 531–532 (1970)

    Article  Google Scholar 

  13. Hurault, J.: Static distortions of a cholesteric planar structure induced by magnet ic or ac electric fields. J. Chem. Phys. 59(4), 2068–2075 (1973)

    Article  Google Scholar 

  14. Ishikawa, T., Lavrentovich, O.D.: Undulations in a confined lamellar system with surface anchoring. Phys. Rev. E 63(3), 030501 (2001)

    Article  Google Scholar 

  15. Kedney, P.J., Stewart, I.W.: The onset of layer deformations in non-chiral smectic C liquid crystals. ZAMP 45(6), 882–898 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Mirantsev, L.V.: Dynamics of Helfrich–Hurault deformations in smectic-A liquid crystals. Eur. Phys. J. E 38(9), 104 (2015)

    Article  Google Scholar 

  17. Napoli, G.: Weak anchoring effects in electrically driven Freedericksz transitions. J. Phys. A Math. Gen. 39, 11–31 (2005)

    Article  MathSciNet  Google Scholar 

  18. Napoli, G.: On smectic-A liquid crystals in an electrostatic field. IMA J. Appl. Math. 71(1), 34–46 (2006)

    Article  MathSciNet  Google Scholar 

  19. Napoli, G., Nobili, A.: Mechanically induced Helfrich–Hurault effect in lamellar systems. Phys. Rev. E 80(3), 031710 (2009)

    Article  Google Scholar 

  20. Napoli, G., Turzi, S.: On the determination of nontrivial equilibrium configurations close to a bifurcation point. Comput. Math. Appl. 55(2), 299–306 (2008)

    Article  MathSciNet  Google Scholar 

  21. Onuki, A., Fukuda, J.I.: Electric field effects and form birefringence in diblock copolymers. Macromolecules 28, 8788 (1996)

    Article  Google Scholar 

  22. Poursamad, J.B., Hallaji, T.: Freedericksz transition in smectic-A liquid crystals doped by ferroelectric nanoparticles. Phys. B Condens. Matter 504, 112–115 (2017)

    Article  Google Scholar 

  23. Rapini, A., Papoular., M.: Distortion d’une lamelle nématique sous champ magnétique. conditions d’angrage aux paroix. J. Phys. Colloque C4, p. 54 (1969)

  24. Ribotta, R., Durand, G.: Mechanical instabilities of smectic-A liquid crystals under dilatative or compressive stresses. J. Phys. 38, 179–203 (1977)

    Article  Google Scholar 

  25. Santangelo, C.D., Kamien, R.D.: Curvature and topology in smectic-A liquid crystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2061), 2911–2921 (2005)

    Article  MathSciNet  Google Scholar 

  26. Senyuk, B.I., Smalyukh, I.I., Lavrentovich, O.D.: Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold. Phys. Rev. E 74(1), 011712 (2006)

    Article  Google Scholar 

  27. Seul, M., Wolfe, R.: Evolution of disorder in magnetic stripe domains. I. Transverse instabilities and disclination unbinding in lamellar patterns. Phys. Rev. A 46(12), 7519–7533 (1992)

    Article  Google Scholar 

  28. Shalaginov, A.N., Hazelwood, L.D., Sluckin, T.J.: Dynamics of chevron structure formation. Phys. Rev. E 58(6), 7455–7464 (1998)

    Article  Google Scholar 

  29. Siemianowski, S., Brimicombe, P., Jaradat, S., Thompson, P., Bras, W., Gleeson, H.: Reorientation mechanisms in smectic a liquid crystals. Liq. Cryst. 39(10), 1261–1275 (2012). https://doi.org/10.1080/02678292.2012.714486

    Article  Google Scholar 

  30. Singer, S.J.: Layer buckling in smectic-A liquid crystals and two-dimensional stripe phases. Phys. Rev. E 48(4), 2796–2804 (1993)

    Article  Google Scholar 

  31. Stewart, I.W.: Layer undulations in finite samples of smectic-A liquid crystals subjected to uniform pressure and magnetic fields. Phys. Rev. E 58(5), 5926–5933 (1998)

    Article  Google Scholar 

  32. Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  33. Weinan, E.: Nonlinear continuum theory of smectic-A liquid crystals. Arch. Ration. Mech. Anal. 137(2), 159–175 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Napoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Euler–Lagrange equations

Euler–Lagrange equations

Let \(\mathcal {F}\) be a functional with fixed ends a and b:

$$\begin{aligned} \mathcal {F}[u] = \int \limits _a^b \psi (\zeta , u(\zeta ), u'(\zeta ),u''(\zeta ))\ \text {d}\zeta + \psi ^a(u(\zeta ),u'(\zeta ))|_{\zeta =a} + \psi ^b(u(\zeta ),u'(\zeta ))|_{\zeta =b}, \end{aligned}$$
(44)

and consider a perturbed argument function \(u_\eta (\zeta ) = u(\zeta ) + \eta g(\zeta )\), where \(\eta \) is a small parameter and g is a function which vanishes at the ends. Taylor expansion of \(F(u_\eta ,u'_\eta , u''_\eta )\), up to \(\mathcal {O}(\eta )\), yields

$$\begin{aligned} \mathcal {F}[u_\eta ]= & {} \int \limits _a^b\psi (u_\eta ,u'_\eta ,u''_\eta )\ \text {d}{\zeta } + \psi ^a(u_\eta ,u'_\eta )|_{{\zeta } =a} + \psi ^b(u_\eta ,u'_\eta ) |_{{\zeta } =b} \nonumber \\= & {} \int \limits _a^b \left[ \psi (u,u',u'') +\eta \left( \frac{\partial \psi }{\partial u} g + \frac{\partial \psi }{\partial u'} g' + \frac{\partial \psi }{\partial u''} g'' \right) \right] \text {d}\zeta \nonumber \\&+ \left[ \psi ^a(u,u') + \eta \frac{\partial \psi ^a}{\partial u'} g'\right] _{\zeta =a} + \left[ \psi ^b(u,u') + \eta \frac{\partial \psi ^b}{\partial u'} g'\right] _{\zeta =b} . \end{aligned}$$
(45)

From the product differentiation rule, we obtain

$$\begin{aligned} \frac{\partial \psi }{\partial u'} g'= & {} \left( g \frac{\partial \psi }{\partial u'}\right) ' - g \left( \frac{\partial \psi }{\partial u'}\right) ', \end{aligned}$$
(46a)
$$\begin{aligned} \frac{\partial \psi }{\partial u''} g''= & {} \left( g' \frac{\partial \psi }{\partial u''}\right) ' - \left[ g \left( \frac{\partial \psi }{\partial u''}\right) '\right] ' + g \left( \frac{\partial \psi }{\partial u''}\right) ''. \end{aligned}$$
(46b)

Thus, by substituting these two expressions into (45), integrating by parts, and applying the condition \(g(a)=g(b) =0\), we obtain

$$\begin{aligned} \mathcal {F}[u_\eta ]= & {} \int \limits _a^b\psi (u,u',u'')\ \text {d}\zeta + \left[ g' \frac{\partial \psi }{\partial u''}\right] _a^b \eta +\int \limits _a^b\left[ \frac{\partial \psi }{\partial u} - \left( \frac{\partial \psi }{\partial u'}\right) ' + \left( \frac{\partial \psi }{\partial u''}\right) ''\right] \eta g\text {d}\zeta \nonumber \\&+ \left[ \psi ^a(u,u') + \eta \frac{\partial \psi ^a}{\partial u'} g'\right] _{\zeta =a} + \left[ \psi ^b(u,u') + \eta \frac{\partial \psi ^b}{\partial u'} g'\right] _{\zeta =b}. \end{aligned}$$
(47)

Stationary points of (44) are obtained by imposing

$$\begin{aligned} \delta \mathcal {F} = \lim _{\eta \rightarrow 0} \frac{\mathcal {F}[u_\eta ] -\mathcal {F}[u]}{\eta }=0. \end{aligned}$$
(48)

By the arbitrariness of g and \(g'\), the Euler–Lagrange equation

$$\begin{aligned} \frac{\partial \psi }{\partial u} - \left( \frac{\partial \psi }{\partial u'}\right) ' + \left( \frac{\partial \psi }{\partial u''}\right) '' = 0 \quad \zeta \in (a,b) \end{aligned}$$
(49)

and the boundary conditions

$$\begin{aligned}&\frac{\partial \psi ^a}{\partial u'} - \frac{\partial \psi }{\partial u''} = 0 \quad \mathrm{at} \quad \zeta =a, \end{aligned}$$
(50a)
$$\begin{aligned}&\frac{\partial \psi ^b}{\partial u'} + \frac{\partial \psi }{\partial u''} = 0 \quad \mathrm{at} \quad \zeta =b \end{aligned}$$
(50b)

are derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napoli, G., De Pascalis, R. Weak anchoring effects in smectic-A Fréedericksz transitions. Z. Angew. Math. Phys. 70, 132 (2019). https://doi.org/10.1007/s00033-019-1175-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1175-2

Keywords

Mathematics Subject Classification

Navigation