Skip to main content
Log in

Diffusion processes in freely suspended smectic films

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A molecular model describing translational diffusion in freely suspended smectic films (FSSFs) in air is proposed. This model is based on the random walk theory and allows calculation of the translational diffusion coefficient (TDC) across smectic layers (along the director). All values necessary for calculating the TDC are obtained within the generalized mean-field model considering not only anisotropic interactions between nearest neighbors of molecules forming FSSFs, but also the stabilizing effect of the smectic/air interface. The spatial inhomogeneity of order parameters over the FSSF section, arising in this case, results in the fact that the surface tension at the smectic/air interface not only suppresses thermal fluctuations in surface layers, but also completely suppresses translational diffusion of molecules from the FSSF to air. The results of calculations of dimensional translational diffusion in the bulk of the FSSF formed by 5-n-alkyl-2-(4-n-(perfluoroalkyl-metyleneoxy))pentyl molecules during its thinning show that the TDC monotonically increases as the smectic film is thinned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).

    Article  ADS  Google Scholar 

  2. W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).

    Article  ADS  Google Scholar 

  3. J. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1976, Mir, Moscow, 1974).

    MATH  Google Scholar 

  4. A. V. Zakharov and D. E. Sullivan, Phys. Rev. E 82, 041704 (2010).

    Article  ADS  Google Scholar 

  5. M. Veum, E. Kutschera, N. Voshell, S. T. Wang, S. L. Wang, H. T. Nguyen, and C. C. Huang, Phys. Rev. E 71, 020701(R) (2005).

    Article  ADS  Google Scholar 

  6. A. V. Zakharov and A. A. Vakulenko, Phys. Rev. E 86, 031701 (2012).

    Article  ADS  Google Scholar 

  7. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  8. G. Moro, P. L. Nordio, and U. Segre, Chem. Phys. Lett. 105, 440 (1984).

    Article  ADS  Google Scholar 

  9. A. V. Zakharov and I. Śliwa, J. Chem. Phys. 140, 124705 (2014).

    Article  ADS  Google Scholar 

  10. H. R. Glyde, Rev. Mod. Phys. 39, 373 (1967).

    Article  ADS  Google Scholar 

  11. W. L. McMillan, Phys. Rev. A 4, 1238 (1971).

    Article  ADS  Google Scholar 

  12. J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).

    Article  ADS  Google Scholar 

  13. D. C. Douglass, J. Chem. Phys. 35, 81 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Schultz, D. Tauber, J. Schuster, T. Baumgartel, and C. von Borczyskowski, Soft Matter 7, 7431 (2011).

    Article  ADS  Google Scholar 

  15. B. Schultz, M. G. Mazza, and C. Bahr, Phys. Rev. E 90, 040501(R) (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Additional information

Original Russian Text © I. Śliwa, A.V. Zakharov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1624–1631.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śliwa, I., Zakharov, A.V. Diffusion processes in freely suspended smectic films. Phys. Solid State 59, 1648–1655 (2017). https://doi.org/10.1134/S1063783417080248

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417080248

Navigation