Skip to main content
Log in

Thinning and thickening of free-standing smectic films revisited

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present a theoretical explanation of the remarkable thickness instabilities that occur in free-standing smectic films (FSSF) upon changing the external conditions: i) upon heating the film above the bulk smectic disordering temperature, generally the film does not rupture but instead shows successive layer-by-layer thinning transitions; ii) thickening of FSSF, which occurs within the thermal range of the smectic phase upon local heating. All observations reported so far can be explained on the basis of the Landau-de Gennes theory of the smectic state in combination with nucleation theory. In overheated smectic films (thinning) or locally heated FSSF (thickening) an additional normal tensile force appears due to a change of the mean density of the film. In the case of an overheated FSSF the free energy has oscillatory character, and upon heating the balance of tensile and elastic forces breaks down spontaneously. This leads to thinning of the film, which proceeds via thermal nucleation and growing of dislocation loops in the middle plane of the film. The expression for the envelope of the points of thinning as well as estimates of the dynamics of growth of dislocation loops, are in good agreement with experiments. Local heating of a FSSF within the smectic temperature range induces thermal expansion, which shifts the system to a metastable state. This favors nucleation and growth of dislocation loops of excess smectic layers in the middle plane of the film. The activation energy of such dislocation loops attains values below the threshold energy and decreases upon further heating. This leads to local film thickening by many tens of layers. Realization of this scenario depends crucially on the energy dissipated locally in the film. Estimates of the thickness of the growing “island” in the film and of the velocity of the dislocation loop growth are in reasonable agreement with experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Friedel, Ann. Phys. (Paris) 18, 273 (1922).

    Google Scholar 

  2. P.S. Pershan, Structures of Liquid Crystal Phases, World Scientific Lecture Notes in Physics 23 (World Scientific, Singapore, 1988).

  3. P. Pieranski, L. Beliard, J.-Ph. Tournellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J.-P. Fenerol, Ph. Palaric, J. Heuving, B. Cartier, I. Kraus, Physica A 194, 364 (1993).

    Article  ADS  Google Scholar 

  4. C. Bahr, Int. J. Mod. Phys. B 8, 3051 (1994).

    Article  ADS  Google Scholar 

  5. S. Stoebe, P. Mach, C.C. Huang, Phys. Rev. Lett. 73, 1384 (1994).

    Article  ADS  Google Scholar 

  6. S. Stoebe, C.C. Huang, Int. J. Mod. Phys. B 9, 2285 (1995).

    Article  ADS  Google Scholar 

  7. E.I. Demikhov, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 265, 403 (1995).

    Article  Google Scholar 

  8. E.I. Demikhov, V.K. Dolganov, K.P. Meletov, Phys. Rev. E 52, R1285 (1995).

    Article  ADS  Google Scholar 

  9. W.H. de Jeu, B.I. Ostrovskii, A.N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).

    Article  ADS  Google Scholar 

  10. P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, Boca Raton, London, New York, 2006) p. 447.

  11. C. Bohley, R. Stannarius, Soft Matter 4, 683 (2008).

    Article  ADS  Google Scholar 

  12. P.G. de Gennes, Langmuir 6, 1448 (1990).

    Article  Google Scholar 

  13. L.V. Mikheev, A.A. Chernov, Zh. Eksp. Teor. Fiz. 95, 2026 (1989) and reference 31 therein.

    Google Scholar 

  14. E.E. Gorodetskii, E.S. Pikina, V.E. Podnek, JETP 88, 35 (1999) (Zh. Eksp. Teor. Fiz. 115.

    Article  ADS  Google Scholar 

  15. W.H. de Jeu, A. Fera, B.I. Ostrovskii, Eur. Phys. J. E 15, 61 (2004).

    Article  Google Scholar 

  16. P.G. de Gennes, J. Prost, Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

  17. C.Y. Young, R. Pindak, N.A. Clark, R.B. Meyer, Phys. Rev. Lett. 40, 773 (1978).

    Article  ADS  Google Scholar 

  18. J.C. Géminard, R. Hołyst, P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).

    Article  ADS  Google Scholar 

  19. F. Picano, R. Hołyst, P. Oswald, Phys. Rev. E 62, 3747 (2000).

    Article  ADS  Google Scholar 

  20. F. Picano, P. Oswald, E. Kats, Phys. Rev. E 63, 021705 (2001).

    Article  ADS  Google Scholar 

  21. P. Oswald, F. Picano, F. Caillier, Phys. Rev. E 68, 061701 (2003).

    Article  ADS  Google Scholar 

  22. P.M. Johnson, P. Mach, E.D. Wedell, F. Lintgen, M. Neubert, C.C. Huang, Phys. Rev. E 55, 4386 (1997).

    Article  ADS  Google Scholar 

  23. S. Pankratz, P.M. Johnson, H.T. Nguyen, C.C. Huang, Phys. Rev. E 58, R2721 (1998).

    Article  ADS  Google Scholar 

  24. V.K. Dolganov, E.I. Demikhov, R. Fouret, C. Gors, Phys. Lett. A 220, 242 (1996).

    Article  ADS  Google Scholar 

  25. E.A.L. Mol, G.C.L. Wong, J.-M. Petit, F. Rieutord, W.H. de Jeu, Physica B 248, 191 (1998).

    Article  ADS  Google Scholar 

  26. L.V. Mirantsev, Liq. Cryst. 20, 417 (1996).

    Article  Google Scholar 

  27. Y. Martí, Phys. Rev. E 55, 2030 (1997).

    Article  ADS  Google Scholar 

  28. A.N. Shalaginov, D.E. Sullivan, Phys. Rev. E 63, 031704 (2001).

    Article  ADS  Google Scholar 

  29. D.E. Sullivan, A.N. Shalaginov, Phys. Rev. E 70, 011707 (2004).

    Article  ADS  Google Scholar 

  30. S. Pankratz, P.M. Johnson, R. Hołyst, C.C. Huang, Phys. Rev. E 60, R2456 (1999).

    Article  ADS  Google Scholar 

  31. S. Pankratz, P.M. Johnson, A. Paulson, C.C. Huang, Phys. Rev. E 61, 6689 (2000).

    Article  ADS  Google Scholar 

  32. F. Bougrioua, P. Cluzeau, P. Dolganov, G. Joly, H.T. Nguen, V. Dolganov, Phys. Rev. Lett. 95, 027802 (2005).

    Article  ADS  Google Scholar 

  33. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).

  34. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Science, Moscow, 1987) 40–46.

  35. S.M. Stishov, S.N. Nefedov, A.N. Zisman, JETP Lett. 36, 348 (1982).

    ADS  Google Scholar 

  36. S.N. Nefedov, A.N. Zisman, S.M. Stishov, Sov. Phys. JETP 59, 71 (1984).

    Google Scholar 

  37. S. Kralj, T.J. Sluckin, Phys. Rev. E 50, 2940 (1994).

    Article  ADS  Google Scholar 

  38. M. Slavinec, S. Kralj, S. Zumer, T.J. Sluckin, Phys. Rev. E 63, 031705 (2001).

    Article  ADS  Google Scholar 

  39. Z. Kutnjak, S. Kralj, G. Lahajnar, S. Zumer, Phys. Rev. E 70, 051703 (2004).

    Article  ADS  Google Scholar 

  40. P. Oswald, L. Lejček, Eur. Phys. J. E 19, 441 (2006).

    Article  Google Scholar 

  41. P. Richetti, L. Moreau, P. Barois, P. Kékicheff, Phys. Rev. E 54, 1749 (1996).

    Article  ADS  Google Scholar 

  42. A.E. Lord, Phys. Rev. Lett. 29, 1366 (1972).

    Article  ADS  Google Scholar 

  43. L. Ricard, J. Prost, J. Phys. 42, 861 (1981).

    Article  Google Scholar 

  44. H. Li, M. Kardar, Phys. Rev. A 46, 6490 (1992).

    Article  ADS  Google Scholar 

  45. A. Ajdari, L. Peliti, J. Prost, Phys. Rev. Lett. 66, 1481 (1991).

    Article  ADS  Google Scholar 

  46. E.S. Pikina, JETP 109, 885 (2009) (Zh. Eksp. Teor. Fiz. 136.

    Article  ADS  Google Scholar 

  47. E.S. Pikina, Mol. Cryst. Liq. Cryst. 546, 95/[1565] (2011).

    Article  Google Scholar 

  48. E.S. Pikina, C. Rosenblatt, Eur. Phys. J. E 35, 87 (2012).

    Article  Google Scholar 

  49. M.R. Fisch, P.S. Pershan, L.B. Sorensen, Phys. Rev. A 29, 2741 (1984).

    Article  ADS  Google Scholar 

  50. R.J. Birgeneau, C.W. Garland, G.B. Kasting, B.M. Ocko, Phys. Rev. A 24, 2624 (1981).

    Article  ADS  Google Scholar 

  51. P.S. Pershan, J. Prost, J. Appl. Phys. 46, 2343 (1975).

    Article  ADS  Google Scholar 

  52. R. Hołyst, P. Oswald, Int. J. Mod. Phys. B 9, 1515 (1995).

    Article  ADS  Google Scholar 

  53. P.S. Pershan, J. Appl. Phys. 45, 1590 (1974).

    Article  ADS  Google Scholar 

  54. L. Lejček, P. Oswald, J. Phys. II 1, 931 (1991).

    Google Scholar 

  55. M.S. Turner, M. Maaloum, D. Ausserré, J.-F. Joanny, M. Kunz, J. Phys. II 4, 689 (1994).

    Google Scholar 

  56. R. Hołyst, Phys. Rev. Lett. 72, 4097 (1994).

    Article  ADS  Google Scholar 

  57. P.G. de Gennes, C.R. Acad. Sci. Paris B 275, 549 (1972).

    Google Scholar 

  58. M. Kléman, C.E. Williams, J. Phys. (Paris) Lett. 35, L49 (1974).

    Article  Google Scholar 

  59. M. Kléman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, New York, 2003).

  60. S. Kralj, T.J. Sluckin, Liquid crystals 18, 887 (1995).

    Article  Google Scholar 

  61. P. Mach, C.C. Huang, T. Stoebe, E.D. Wedell, T. Nguyen, W.H. de Jeu, F. Guittard, J. Nacri, R. Shashidar, N. Clark, I.M. Jiang, F.J. Kao, H. Lui, H. Nohira, Langmuir 14, 4330 (1998).

    Article  Google Scholar 

  62. D. Davidov, C.R. Safinya, M. Kaplan, S.S. Dana, R. Schaetzing, R.J. Birgeneau, J.D. Litster, Phys. Rev. B 19, 1657 (1979).

    Article  ADS  Google Scholar 

  63. J.S. Langer, M.E. Fisher, Phys. Rev. Lett. 19, 560 (1967).

    Article  ADS  Google Scholar 

  64. E.I. Demikhov, M. John, K. Krohn, Liq. Cryst. 23, 443 (1997).

    Article  Google Scholar 

  65. P. Cluzeau, V. Dolganov, P. Poulin, G. Joly, H.T. Nguyen, Mol. Cryst. Liq. Cryst. 364, 381 (2001).

    Article  Google Scholar 

  66. R. Najjar, Y. Galerne, Mol. Cryst. Liq. Cryst. 367, 3263 (2001).

    Google Scholar 

  67. H. Schüuring, R. Stannarius, Langmuir 18, 9735 (2002).

    Article  Google Scholar 

  68. H. Schüring, R. Stannarius, Mol. Cryst. Liq. Cryst. 412, 425/[2035] (2004).

    Article  Google Scholar 

  69. L. Lejček, J. Bechhoefer, P. Oswald, J. Phys. II 2, 1511 (1992).

    Google Scholar 

  70. J. Bechhoefer, L. Lejček, P. Oswald, J. Phys. II 2, 27 (1992).

    Google Scholar 

  71. A.J. Jin, M. Veum, T. Stoebe, C.F. Chou, J.T. Ho, S.W. Hui, V. Surendranath, C.C. Huang, Phys. Rev. E 53, 3639 (1996).

    Article  ADS  Google Scholar 

  72. N.A. Clark, Phys. Rev. A 14, 1551 (1976).

    Article  ADS  Google Scholar 

  73. E.E. Gorodetskii, V.E. Podnek, Book of Abstracts of the 11th International Liquid Crystal, MA-9 Conference (Berkeley, California, 1986).

  74. V.E. Podnek, Ph.D. Thesis (Moscow, 1987).

  75. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer-Verlag, New York, 2004).

  76. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Science, Moscow, 1979) pp. 503–516.

  77. P. Noziéres, Shape and growth of crystals, in Solids far from Equilibrium, Beg Rohu Lectures, edited by C. Godreche (Cambridge University Press, 1992).

  78. P. Noziéres, F. Gallet, J. Phys. 48, 353 (1987).

    Article  Google Scholar 

  79. W. Urbach, H. Hervet, F. Rondelez, Mol. Cryst. Liq. Cryst. 46, 209 (1978).

    Article  Google Scholar 

  80. W. Urbach, H. Hervet, F. Rondelez, J. Chem. Phys. 78, 5113 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Pikina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikina, E.S., Ostrovskii, B.I. & de Jeu, W.H. Thinning and thickening of free-standing smectic films revisited. Eur. Phys. J. E 38, 13 (2015). https://doi.org/10.1140/epje/i2015-15013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15013-8

Keywords

Navigation