Skip to main content
Log in

The Genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)

  • Molecular Biology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

We determined the entire genome sequence of the marine bacterium Cobetia marina KMM 296 de novo, which was isolated from the mussel Crenomytilus grayanus that inhabits the Sea of Japan. The genome that provides the lifestyle of this marine bacterium provides alternative metabolic pathways that are characteristic of the inhabitants of the rhizospheres of terrestrial plants, as well as deep-sea ecological communities (symbiotic and free-living bacteria). The genome of C. marina KMM 296 contains genes that are involved in the metabolism and transport of nitrogen, sulfur, iron, and phosphorus. C. marina strain KMM 296 is a promising source of unique psychrophilic enzymes and essential secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, R.K., Bartels, D., Best, A.A., et al., The RAST server: rapid annotations using subsystems technology, BMC Genomics, 2008, vol. 9, p. 75, doi 10.1186/14712164-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balabanova, L.A., Gafurov, Y.M., Pivkin, M.V., et al., An extracellular S1-type nuclease of marine fungus Penicillium melinii, Mar. Biotechnol., 2012, vol. 14, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  3. Balabanova, L., Golotin, V., Kovalchuk, S., et al., A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannanbinding lectin activities, PloS One, 2014, vol. 9, p. e112729.

  4. Behera, B.C., Singdevsachan, S.K., Mishra, R.R., et al., Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove, Biocatal. Agric. Biotechnol., 2014, vol. 3, pp. 97–110.

    Google Scholar 

  5. Belcheva, N.N., Zakhartsev, M.V., Dovzhenko, N.V., et al., Anthropogenic pollution stimulates oxidative stress in soft tissues of mussel Crenomytilus grayanus, Ocean Sci. J., 2011, vol. 46, pp. 85–94.

    Article  CAS  Google Scholar 

  6. Golotin, V.A., Balabanova, L.A., Likhatskaya, G.N., and Rasskazov, V.A., Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina, Mar. Biotechnol., 2015, vol. 17, pp. 130–143.

    Article  CAS  PubMed  Google Scholar 

  7. Ibacache-Quiroga, C., Ojeda, J., Espinoza-Vergara, G., et al., The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking, Microb. Biotechnol., 2013, vol. 6, pp. 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ista, L.K., Callow, M.E., Finlay, J.A., et al., Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores, Appl. Environ. Microbiol., 2004, vol. 70, pp. 4151–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ivanova, E.P., Christen, R., Sawabe, T., et al., Presence of ecophysiologically diverse populations within Cobetia marina strains isolated from marine invertebrate, algae and the environments, Microbes Environ., 2005, vol. 20, pp. 200–207.

    Article  Google Scholar 

  10. Kim, M.S., Roh, S.W., and Bae, J.W., Cobetia crustatorum sp. nov., a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 620–626.

    Article  CAS  PubMed  Google Scholar 

  11. Lamport, D.T.A., Kieliszewski, M.J., Chen, Y., and Cannon M.C., Role of the extensin superfamily in primary cell wall architecture, Plant Physiol., 2011, vol. 156, pp. 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lang, Y., Ren, Y., Bai, L., and Zhang, L., Hydroxyectoine synthesis and release under osmotic shock in Cobetia marina CICC10367, Wei Sheng Wu Xue Bao, 2009, vol. 49, pp. 1590–1595.

    CAS  PubMed  Google Scholar 

  13. Masai, E., Katayama, Y., and Fukuda, M., Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds, Biosci. Biotechnol. Biochem., 2007, vol. 71, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  14. Plisova, E.Y., Balabanova, L.A., Ivanova, E.P., et al., A highly active alkaline phosphatase from the marine bacterium Cobetia, Mar. Biotechnol., 2005, vol. 7, pp. 173–178.

    Article  CAS  Google Scholar 

  15. Quillaguamán, J., Guzmán, H., Van-Thuoc, D., and Hatti-Kaul, R., Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 1687–1696.

    Article  PubMed  Google Scholar 

  16. Rao, D.N., Dryden, D.T.F., and Bheemanaik, S., Type III restriction-modification enzymes: a historical perspective, Nucleic Acids Res., 2013, doi 10.1093/nar/gkt616

    Google Scholar 

  17. Sievert, S.M. and Vetriani, C., Chemoautotrophy at deep-sea vents: past, present, and future, Oceanography, 2012, vol. 25, pp. 218–233.

    Google Scholar 

  18. Trentin, D.S., Gorziza, D.F., Abraham, W.R., et al., Antibiofilm activity of Cobetia marina filtrate upon Staphylococcus epidermidis catheter-related isolates, Braz. J. Microbiol., 2011, vol. 42, pp. 1329–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vacheron, J., Desbrosses, G., Bouffaud, M.-L., et al., Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci., 2013, vol. 4, p. 356.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wattam, A.R., Abraham, D., Dalay, O., et al., PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Res., 2014, vol. 42, pp. D581–D591.

  21. Xu, M., Zhang, Q., Xia, C., et al., Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments, ISME J., 2014, vol. 8, pp. 1932–1944, doi 10.1038/ismej.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Balabanova.

Additional information

Original Russian Text © L.A. Balabanova, V.A. Golotin, S.N. Kovalchuk, A.V. Babii, L.S. Shevchenko, O.M. Son, G.Yu. Kosovsky, V.A. Rasskazov, 2016, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanova, L.A., Golotin, V.A., Kovalchuk, S.N. et al. The Genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853). Russ J Mar Biol 42, 106–109 (2016). https://doi.org/10.1134/S106307401601003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307401601003X

Keywords

Navigation