Skip to main content

Advertisement

Log in

Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6–96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293

    Article  Google Scholar 

  • Biggins JB, Ternei MA, Brady SF (2012) Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134:13192–13195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E et al (2013) antiSMASH 20—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruhn A, Janicek T, Manns D, Nielsen MM, Balsby TJS, Meyer AS et al (2017) Crude fucoidan content in two North Atlantic kelp species, Saccharina latissima and Laminaria digitate—seasonal variation and impact of environmental factors. J Appl Phycol 29:3121–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhari NM, Gupta VK, Dutta C (2016) BPGA—an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chen IM, Markowitz VM, Palaniappan K, Szeto E, Chu K, Huang J et al (2016) Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genom 17:307

    Article  Google Scholar 

  • Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A et al (2019) IMG/M v50: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47:666–677

    Article  Google Scholar 

  • DSMZ (2019) List of recommended media for microorganisms. https://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html. Accessed 21 June 2019

  • Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed Engl 51:11611–11615

    Article  CAS  PubMed  Google Scholar 

  • Gerpe D, Buján N, Diéguez AL, Lasa A, Romalde JL (2017) Kiloniella majae sp nov, isolated from spider crab (Maja brachydactyla) and pullet carpet shell clam (Venerupis pullastra). Syst Appl Microbiol 40:274–279

    Article  CAS  PubMed  Google Scholar 

  • Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K et al (2015) The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v4). Stand Genom Sci 10:86

    Article  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon KK, Lee SJ, Lee YK, Cho KH, Lee HK (2005) Kopriimonas byunsanensiss gen. nov. sp. nov., a novel member of the α-Proteobacteria (Kopriimonadales ord nov) isolated from natural marine biofilm. https://www.ncbi.nlm.nih.gov/nuccore/DQ1672451. Accessed 21 June 2019.

  • Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT et al (2014a) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLOS Biol 12:e1001920

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyrpides NC, Woyke T, Eisen JA, Garrity G, Lilburn TG, Beck BJ et al (2014b) Genomic encyclopedia of type strains, phase I: the one thousand microbial genomes (KMG-I) project. Stand Genom Sci 9:1278–1296

    Article  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrezwski P, Fischbach MA et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res 39:W339–W346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Göker M et al (2017) 1003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 35:676–683

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Katta HY et al (2019) Genomes online database (GOLD) v7: updates and new features. Nucleic Acid Res 47:D649–D659

    Article  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues MF, Valentin HE, Berger PA, Tran M, Asrar J, Gruys KJ et al (2000) Polyhydroxyalkanoate accumulation in Burkholderia sp: a molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acid. Appl Microbiol Biotechnol 53:453–460

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Zhang P, Li Q, Wang X, Duan D (2014) Characterization of mannitol-2-dehydrogenase in Saccharina japonica: evidence for a new polyol-specific long-chain dehydrogenases/reductase. PLoS ONE 9:e97935

    Article  PubMed  PubMed Central  Google Scholar 

  • Si OJ, Yang HY, Hwang CY, Kim SJ, Choi SB, Kim JG et al (2017) Kiloniella antarctica sp. nov., isolated from a polynya of Amundsen Sea in Western Antarctic Sea. Int J Syst Evol Microbiol 67:2397–2402

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner M, Edlund U (2006) Multicomponent fractionations of Saccharina latissima brown algae using chelating salt solutions. J Appl Phcol 28:2561–2574

    Article  Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colonic acid. J Bacteriol 178:4885–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li X, Shao Z (2015a) Draft genome sequence of the denitrifying strain Kiloniella sp. P1–1 isolated from the gut microflora of Pacific white shrimp Litopenaeus vannamei. Mar Genom 3:261–263

    Article  Google Scholar 

  • Wang L, Xiaoyi L, Lai Q, Shao Z (2015b) Kiloniella litopenai sp. nov., isolated from the gut microflora of Pacific white shrimp Litopenaeus vannamei. Ant Leeuwenhoek 108:1293–1299

    Article  CAS  Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R et al (2015) antiSMASH—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese J, Thiel V, Gärtner A, Schmaljohann R, Imhoff JF (2009a) Kiloniella laminariae, gen. nov., sp. nov., a new alphaproteobacterium from the marine macroalga Laminaria saccharina. Int J Syst Evol Microbiol 59:350–356

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009b) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11:287–300

    Article  CAS  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al (2009) A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-H, Seo H-S, Lee J-H, Kim S-J, Kwon KK et al (2015) Kiloniella spongiae sp. nov., isolated from a marine sponge and emended description of the genus Kiloniella Wiese 2009 and Kiloniella laminariae. Int J Syst Evol Microbiol 65:230–234

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y et al (2008) Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for napthoate biosynthesis. Chem Biol 15:693–705

    Article  CAS  PubMed  Google Scholar 

  • Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE 7:e34064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of Andrea Schuetze (DSMZ) for growing cells of K. laminariae LD81T (= DSM 19542T) and of Evelyne Brambilla (DSMZ) for DNA extraction and quality control. Financial support of ERA-NET Marine Biotechnology: “ProBone—new tools for prospecting the marine bone-degrading microbiome for new enzymes” (FKZ 031B0570) to U.H. and E.B. is acknowledged. We also thank the Genomics and Proteomics Core Facility (DKFZ) for using their computational resources. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. This study was funded by Horizon 2020 (Grant number ERA-NET FKZ 031B0570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Wiese.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiese, J., Imhoff, J.F., Horn, H. et al. Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species. Arch Microbiol 202, 815–824 (2020). https://doi.org/10.1007/s00203-019-01791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01791-0

Keywords

Navigation