Skip to main content

Brazilian Tensile Strength Testing

Abstract

The paper discusses the direct and Brazilian tensile strength testing data in terms of the mechanical properties of rocks. The statistical correlation factors by categories of rocks only offer rough estimates of the direct strength in tension using the Brazilian tensile strength test data. It is suggested to compare the two methods using models which include the structure of a material. It is shown that when the analysis includes the biaxial stress field, which leads to a decrease in the strength by the Brazilian test as compared with the strength value from the direct tension, as well as when the analysis includes the nonuniformity of the tensile stresses, which brings an opposite effect, the tensile strength values of the two methods are correlated more accurately.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Hoek, E. and Bieniawski, Z.T., Brittle Fracture Propagation in Rock under Compression, Int. J. Fracture Mechan., 1965, vol. 1, pp. 137–155.

    Article  Google Scholar 

  2. Lin, P., Wong, R.H.C., and Tang, C.A., Experimental Study of Coalescence Mechanisms and Failure under Uniaxial Compression of Granite Containing Multiple Holes, Int. J. Rock Mech. Min. Sci., 2015, vol. 77, pp. 313–327.

    Article  Google Scholar 

  3. Healy, D., Jones, R.R., and Holdsworth, R.E., New Insights into the Development of Brittle Shear Fractures from a 3D Numerical Model of Microcrack Interaction, Earth and Planetary Sci. Letters, 2006, vol. 249, iss. 1–2, pp. 14–28.

    Article  Google Scholar 

  4. Lankford, J., The Role of Tensile Microfracture in the Strain Rate Dependence of Compressive Strength of Fine-Grained Limestone—Analogy with Strong Ceramics, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1981, vol. 18, pp. 173–175.

    Article  Google Scholar 

  5. Veksler, Yu.A., Durability of Rocks under Compression, J. Min. Sci., 1979, vol. 15, no. 3, pp. 250–254.

    Article  Google Scholar 

  6. Efimov, V.P., Investigation into the Long-Term Strength of Rocks under Loading with a Constant Rate, J. Min. Sci., 2007, vol. 43, no. 6, pp. 600–606.

    Article  Google Scholar 

  7. Gelazov, M.A., Kuksenko, V.S., and Slutsker, A.I., Fibrillar Structure and Submicroscopic Fractures in Oriented Crystalline Polymers, FGT, 1970, vol. 12, pp. 100–108.

    Google Scholar 

  8. Carneiro, F., A New Method to Determine the Tensile Strength of Concrete, Proc. of the 5th Meeting of the Brazilian Association for Technical Rules, 1943.

  9. Lavrov, A. and Vervoort, A., Theoretical Treatment of Tangential Loading Effects on the Brazilian Test Stress Distribution, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 275–283.

    Article  Google Scholar 

  10. Kourkoulis, S.K., Markides, Ch.F., and Chatzistergos, P.E., The Brazilian Disc under Parabolically Varying Load: Theoretical and Experimental Study of the Displacement Field, Int. J. Solids Structures, 2012, vol. 49, pp. 959–972.

    Article  Google Scholar 

  11. Markides, C.F. and Kourkoulis, S.K., The Influence of Jaw’s Curvature on the Results of the Brazilian Disc Test, J. Rock Mech. Geotech. Eng., 2016, vol. 8, no. 2, pp. 127–146.

    Article  Google Scholar 

  12. ASTM D 3967-08. Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM International, West Conshohocken, USA, 2008.

  13. ISRM Suggested Methods for Determining Tensile Strength of Rock Materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1978, vol. 15, no. 3, pp. 99–103.

  14. National Standards Compilation Group of People’s Republic of China, GB/T 50266-99 Standard for Tests Method of Engineering Rock Masses, Beijing: China Plan Press, 1999 [in Chinese].

  15. Brawn, E.T. and Trollope, D., The Failure of Linear Brittle Materials under Effective Tensile Stress, J. Rock Mech. Eng. Geol., 1967, vol. 5, pp. 229–241.

    Google Scholar 

  16. Briševac Z., Kujundžic T., and Cajic S. Current Cognition of Rock Tensile Strength Testing by Brazilian Test, The Mining–Geology–Petroleum Engineering Bulletin, 2015, pp 101–114.

    Article  Google Scholar 

  17. Perras M.A. and Diederichs M.S. A Review of the Tensile Strength of Rock. Concepts and Testing, J. Geotech. Geol. Eng., 2014, vol. 32, no. 2, pp 525–546.

    Article  Google Scholar 

  18. Li, D. and Wong, L., The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights, J. Rock Mech. Rock Eng., 2013, vol. 46, pp. 269–287.

    Article  Google Scholar 

  19. Demirdag, S., Tufekci, K., Sengun, N., Efe, T., and Altindag, R., Determination of the Direct Tensile Strength of Granite Rock by Using a New Dumbbell Shape and its Relationship with Brazilian Tensile Strength, IOP Conf. Series: Earth and Environmental Sci., 2019, vol. 221. Article ID 012094.

  20. Jaeger, J.C., Failure of Rocks under Tensile Conditions, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1967, vol. 4, no. 2, pp. 219–227.

  21. Pandey, P. and Singh, D.P., Deformation of a Rock in Different Tensile Tests, J. Eng. Geol., 1986, vol. 22, no. 3, pp. 281–292.

    Article  Google Scholar 

  22. Fuenkajorn, K. and Klanphumeesri, S., Laboratory Determination of Direct Tensile Strength and Deformability of Intact Rocks, Geotech. Testing J., 2011, vol. 34, no. 1, pp. 97–102.

    Google Scholar 

  23. Unlu T. and Yilmaz O. A New Method Developed for Determining Direct Tensile Strength of Intact Rock Materials, Proc. of the 11th Regional Rock Mech. Symp., 2014.

  24. Efimov, V.P., The Rock Strength in Different Tension Conditions, J. Min. Sci., 2009, vol. 45, no. 6, pp. 569–575.

    Article  Google Scholar 

  25. Mellor, M. and Hawkes, I., Measurement of Tensile Strength by Diametral Compression of Discs and Annuli, J. Eng. Geol., 1971, vol. 5, no. 3, pp. 173–225.

    Article  Google Scholar 

  26. Ramana, Y.V. and Sarma, L.P., Split-Collar Tensile Test Grips for Short Rock Cores, J. Eng. Geol., 1987, vol. 23, pp. 255–261.

    Article  Google Scholar 

  27. Alehossein, H. and Boland, J.N., Strength, Toughness, Damage and Fatigue of Rock, Proc. Int. Conf. Structural Integrity Fracture, Brisbane, Australia, 2004, Article ID 836.

  28. Liu, J., Chen, L., Wang, C., Man, K., Wang, L., Wang, J., and Su, R., Characterizing the Mechanical Tensile Behavior of Beishan Granite with Different Experimental Methods, Int. J. Rock Mech. Min. Sci., 2014, vol. 69, pp. 50–58.

    Article  Google Scholar 

  29. Qi, S.W., Lan, H.X., Martin, D., and Huang, X.L., Factors Controlling the Difference in Brazilian and Direct Tensile Strengths of the Lac du Bonnet Granite, J. Rock Mech. Rock Eng., 2020, vol. 53, pp. 1005–1019.

    Article  Google Scholar 

  30. Andreev, G.E., A Review of the Brazilian Test for Rock Tensile Strength Determination. Part I: Calculation Formula, J. Min. Sci. Technol., 1991, vol. 13, no. 3, pp. 445–456.

    Article  Google Scholar 

  31. Hansen, F.D. and Vogt, T.J., Thermomechanical Properties of Selected Shales, Oak Ridge National Laboratory Report, 1987.

  32. Hakala, M. and Heikkila, E., Posiva Laboratory Testing Reports WR-97-04, WR-97-07e, 1997.

  33. Erarslan, N. and Williams, D., Experimental, Numerical and Analytical Studies on Tensile Strength of Rocks, Int. J. Rock Mech. Min. Sci., 2012, vol. 49, pp. 21–30.

    Article  Google Scholar 

  34. Coviello, A., Lagioia, R., and Nova, R., On the Measurement of the Tensile Strength of Soft Rocks, J. Rock Mech. Rock Eng., 2005, vol. 38, no. 4, pp. 251–273.

    Article  Google Scholar 

  35. Li, K., Cheng, Y., Yin, Z.Y., Han, D., and Meng, J., Size Effects in a Transversely Isotropic Rock under Brazilian Tests: Laboratory Testing, J. Rock Mech. Rock Eng., 2020, vol. 53, pp. 2623–2642.

    Article  Google Scholar 

  36. L’Hermite, R., Idées Actuelles sur la Technologie du Béton, Paris, 1955.

  37. Yashin, A.V., Non-Uniaxial Stress–Strain Behavior of Concrete, Prochnost’, strukturnye izmeneniya i deformatsii betona (Strength, Structural Changes and Deformations of Concrete), Moscow: Stroyizdat, 1978.

    Google Scholar 

  38. Mal’tsov, K.A. and Pak, A.P., Accounting for a Complex Stress State when Calculating the Strength of Concrete in Structures, Izv. VNIIG, 1972, vol. 100, pp. 205–214.

    Google Scholar 

  39. Zaitsev, G.G., Barabanov, V.N., and Laukhina, N.S., Comparative Method for Determining the Strength Limit of Graphite by Compressing Cylindrical Specimens along the Generatrix, Graphite-Based Structural Materials: Collection of Works, 1971, no. 6, pp. 153–156.

  40. Frocht, M.M., Photoelasticity. Vol. II. John Wiley and Sons Inc., New York, 1948.

    Google Scholar 

  41. Trapeznikov, L.P., Temperaturnaya treshchinostoykost’ massivnykh betonnykh konstruktsii (Thermal Crack Resistance of Massive Concrete Structures), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  42. Legan, M.A., On the Relationship between Gradient Criteria of Local Strength in Stress Concentration Zone and Linear Fracture Mechanics, PMTF, 1993, no. 4, pp. 146–154.

  43. Efimov, V.P., Effect of Loading Rate on Fracture Toughness within the Kinetic Concept of Thermal Fluctuation Mechanism of Rock Failure, J. Min. Sci., 2016, vol. 52, no. 2, pp. 274–278.

    Article  Google Scholar 

  44. Zhang, Z.X., An Empirical Relation between Mode I Fracture Toughness and the Tensile Strength of Rock, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 401–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Efimov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efimov, V.P. Brazilian Tensile Strength Testing. J Min Sci 57, 922–932 (2021). https://doi.org/10.1134/S1062739121060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121060053

Keywords

  • rocks
  • tensile strength
  • Brazilian test
  • structural parameter