Hoek, E. and Bieniawski, Z.T., Brittle Fracture Propagation in Rock under Compression, Int. J. Fracture Mechan., 1965, vol. 1, pp. 137–155.
Article
Google Scholar
Lin, P., Wong, R.H.C., and Tang, C.A., Experimental Study of Coalescence Mechanisms and Failure under Uniaxial Compression of Granite Containing Multiple Holes, Int. J. Rock Mech. Min. Sci., 2015, vol. 77, pp. 313–327.
Article
Google Scholar
Healy, D., Jones, R.R., and Holdsworth, R.E., New Insights into the Development of Brittle Shear Fractures from a 3D Numerical Model of Microcrack Interaction, Earth and Planetary Sci. Letters, 2006, vol. 249, iss. 1–2, pp. 14–28.
Article
Google Scholar
Lankford, J., The Role of Tensile Microfracture in the Strain Rate Dependence of Compressive Strength of Fine-Grained Limestone—Analogy with Strong Ceramics, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1981, vol. 18, pp. 173–175.
Article
Google Scholar
Veksler, Yu.A., Durability of Rocks under Compression, J. Min. Sci., 1979, vol. 15, no. 3, pp. 250–254.
Article
Google Scholar
Efimov, V.P., Investigation into the Long-Term Strength of Rocks under Loading with a Constant Rate, J. Min. Sci., 2007, vol. 43, no. 6, pp. 600–606.
Article
Google Scholar
Gelazov, M.A., Kuksenko, V.S., and Slutsker, A.I., Fibrillar Structure and Submicroscopic Fractures in Oriented Crystalline Polymers, FGT, 1970, vol. 12, pp. 100–108.
Google Scholar
Carneiro, F., A New Method to Determine the Tensile Strength of Concrete, Proc. of the 5th Meeting of the Brazilian Association for Technical Rules, 1943.
Lavrov, A. and Vervoort, A., Theoretical Treatment of Tangential Loading Effects on the Brazilian Test Stress Distribution, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 275–283.
Article
Google Scholar
Kourkoulis, S.K., Markides, Ch.F., and Chatzistergos, P.E., The Brazilian Disc under Parabolically Varying Load: Theoretical and Experimental Study of the Displacement Field, Int. J. Solids Structures, 2012, vol. 49, pp. 959–972.
Article
Google Scholar
Markides, C.F. and Kourkoulis, S.K., The Influence of Jaw’s Curvature on the Results of the Brazilian Disc Test, J. Rock Mech. Geotech. Eng., 2016, vol. 8, no. 2, pp. 127–146.
Article
Google Scholar
ASTM D 3967-08. Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM International, West Conshohocken, USA, 2008.
ISRM Suggested Methods for Determining Tensile Strength of Rock Materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1978, vol. 15, no. 3, pp. 99–103.
National Standards Compilation Group of People’s Republic of China, GB/T 50266-99 Standard for Tests Method of Engineering Rock Masses, Beijing: China Plan Press, 1999 [in Chinese].
Brawn, E.T. and Trollope, D., The Failure of Linear Brittle Materials under Effective Tensile Stress, J. Rock Mech. Eng. Geol., 1967, vol. 5, pp. 229–241.
Google Scholar
Briševac Z., Kujundžic T., and Cajic S. Current Cognition of Rock Tensile Strength Testing by Brazilian Test, The Mining–Geology–Petroleum Engineering Bulletin, 2015, pp 101–114.
Article
Google Scholar
Perras M.A. and Diederichs M.S. A Review of the Tensile Strength of Rock. Concepts and Testing, J. Geotech. Geol. Eng., 2014, vol. 32, no. 2, pp 525–546.
Article
Google Scholar
Li, D. and Wong, L., The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights, J. Rock Mech. Rock Eng., 2013, vol. 46, pp. 269–287.
Article
Google Scholar
Demirdag, S., Tufekci, K., Sengun, N., Efe, T., and Altindag, R., Determination of the Direct Tensile Strength of Granite Rock by Using a New Dumbbell Shape and its Relationship with Brazilian Tensile Strength, IOP Conf. Series: Earth and Environmental Sci., 2019, vol. 221. Article ID 012094.
Jaeger, J.C., Failure of Rocks under Tensile Conditions, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1967, vol. 4, no. 2, pp. 219–227.
Pandey, P. and Singh, D.P., Deformation of a Rock in Different Tensile Tests, J. Eng. Geol., 1986, vol. 22, no. 3, pp. 281–292.
Article
Google Scholar
Fuenkajorn, K. and Klanphumeesri, S., Laboratory Determination of Direct Tensile Strength and Deformability of Intact Rocks, Geotech. Testing J., 2011, vol. 34, no. 1, pp. 97–102.
Google Scholar
Unlu T. and Yilmaz O. A New Method Developed for Determining Direct Tensile Strength of Intact Rock Materials, Proc. of the 11th Regional Rock Mech. Symp., 2014.
Efimov, V.P., The Rock Strength in Different Tension Conditions, J. Min. Sci., 2009, vol. 45, no. 6, pp. 569–575.
Article
Google Scholar
Mellor, M. and Hawkes, I., Measurement of Tensile Strength by Diametral Compression of Discs and Annuli, J. Eng. Geol., 1971, vol. 5, no. 3, pp. 173–225.
Article
Google Scholar
Ramana, Y.V. and Sarma, L.P., Split-Collar Tensile Test Grips for Short Rock Cores, J. Eng. Geol., 1987, vol. 23, pp. 255–261.
Article
Google Scholar
Alehossein, H. and Boland, J.N., Strength, Toughness, Damage and Fatigue of Rock, Proc. Int. Conf. Structural Integrity Fracture, Brisbane, Australia, 2004, Article ID 836.
Liu, J., Chen, L., Wang, C., Man, K., Wang, L., Wang, J., and Su, R., Characterizing the Mechanical Tensile Behavior of Beishan Granite with Different Experimental Methods, Int. J. Rock Mech. Min. Sci., 2014, vol. 69, pp. 50–58.
Article
Google Scholar
Qi, S.W., Lan, H.X., Martin, D., and Huang, X.L., Factors Controlling the Difference in Brazilian and Direct Tensile Strengths of the Lac du Bonnet Granite, J. Rock Mech. Rock Eng., 2020, vol. 53, pp. 1005–1019.
Article
Google Scholar
Andreev, G.E., A Review of the Brazilian Test for Rock Tensile Strength Determination. Part I: Calculation Formula, J. Min. Sci. Technol., 1991, vol. 13, no. 3, pp. 445–456.
Article
Google Scholar
Hansen, F.D. and Vogt, T.J., Thermomechanical Properties of Selected Shales, Oak Ridge National Laboratory Report, 1987.
Hakala, M. and Heikkila, E., Posiva Laboratory Testing Reports WR-97-04, WR-97-07e, 1997.
Erarslan, N. and Williams, D., Experimental, Numerical and Analytical Studies on Tensile Strength of Rocks, Int. J. Rock Mech. Min. Sci., 2012, vol. 49, pp. 21–30.
Article
Google Scholar
Coviello, A., Lagioia, R., and Nova, R., On the Measurement of the Tensile Strength of Soft Rocks, J. Rock Mech. Rock Eng., 2005, vol. 38, no. 4, pp. 251–273.
Article
Google Scholar
Li, K., Cheng, Y., Yin, Z.Y., Han, D., and Meng, J., Size Effects in a Transversely Isotropic Rock under Brazilian Tests: Laboratory Testing, J. Rock Mech. Rock Eng., 2020, vol. 53, pp. 2623–2642.
Article
Google Scholar
L’Hermite, R., Idées Actuelles sur la Technologie du Béton, Paris, 1955.
Yashin, A.V., Non-Uniaxial Stress–Strain Behavior of Concrete, Prochnost’, strukturnye izmeneniya i deformatsii betona (Strength, Structural Changes and Deformations of Concrete), Moscow: Stroyizdat, 1978.
Google Scholar
Mal’tsov, K.A. and Pak, A.P., Accounting for a Complex Stress State when Calculating the Strength of Concrete in Structures, Izv. VNIIG, 1972, vol. 100, pp. 205–214.
Google Scholar
Zaitsev, G.G., Barabanov, V.N., and Laukhina, N.S., Comparative Method for Determining the Strength Limit of Graphite by Compressing Cylindrical Specimens along the Generatrix, Graphite-Based Structural Materials: Collection of Works, 1971, no. 6, pp. 153–156.
Frocht, M.M., Photoelasticity. Vol. II. John Wiley and Sons Inc., New York, 1948.
Google Scholar
Trapeznikov, L.P., Temperaturnaya treshchinostoykost’ massivnykh betonnykh konstruktsii (Thermal Crack Resistance of Massive Concrete Structures), Moscow: Energoatomizdat, 1986.
Google Scholar
Legan, M.A., On the Relationship between Gradient Criteria of Local Strength in Stress Concentration Zone and Linear Fracture Mechanics, PMTF, 1993, no. 4, pp. 146–154.
Efimov, V.P., Effect of Loading Rate on Fracture Toughness within the Kinetic Concept of Thermal Fluctuation Mechanism of Rock Failure, J. Min. Sci., 2016, vol. 52, no. 2, pp. 274–278.
Article
Google Scholar
Zhang, Z.X., An Empirical Relation between Mode I Fracture Toughness and the Tensile Strength of Rock, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 401–406.
Article
Google Scholar