Skip to main content
Log in

Effect of friction-induced hardening on the features of magnetic and eddy-current behavior of an annealed structural steel under cyclic loading conditions

  • Magnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The effect of friction processing on the mechanical properties in uniaxial tension, the magnetic properties, and the electromagnetic characteristics of an annealed Steel 3 (St3) grade structural steel has been studied. It is established that the coercive force, residual magnetic induction, initial magnetic permeability, and eddy-current characteristics can serve as parameters for monitoring the quality of steel hardened by friction processing. Features of friction-induced changes in the strength, magnetic properties, and electromagnetic characteristics of St3 grade steel loaded in the region of low-cycle fatigue are revealed. It is shown that magnetic and eddy-current techniques can be used for monitoring the state of a friction-hardened surface layer of steel samples in the course of their cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nichipuruk, A.P., Degtyarev, M.V., Gorkunov, E.S., Chashchukhina, T.I., Voronova, L.M., and Davydova, L.S., Microstructure, Mechanical and Magnetic Properties of the St3 and U8 Steels after Repeated Extending Deformation, Defektoskopiya, 2001, no. 1, pp. 32–37 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2001, vol. 37, no. 1, pp. 24–28].

  2. Bystrushkin G.S. Possibility of Determination of an Early Stage of Fatigue Damage of Chromium Steel via the Eddy-Current Method, Defektoskopiya, 1968, no. 5, pp. 1–7.

  3. Donzella, G. and Granzotto, S., Some Experimental Results About the Correlation Between Barkhausen Noise and the Fatigue Life of Steel Specimens, J. Magn. Magn. Mater., 1994, vol. 133, pp. 613–616.

    Article  CAS  Google Scholar 

  4. Palma, E.S., Mansur, T.R., Ferreira, SilvaS.., and Alvarenga, A.., Fatigue Damage Assessment in AISI 8620 Steel Barkhausen Noise, Int. J. Fatigue, 2005, vol. 27, pp. 659–665.

    Article  CAS  Google Scholar 

  5. Gorkunov, E.S., Savrai, R.A., Makarov, A.V., Zadvorkin, S.M., Smirnov, S.V., Rogovaya, S.A., and Solomein, M.N. Application of Magnetic and Electromagnetic-Acoustic Methods for Assessing Plastic Deformations under Cyclic Loading of Annealed Intermediate-Carbon Steel, Defektoskopiya, 2006, no. 5, pp. 29–36 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2006, vol. 42, no. 5, pp. 309–314].

  6. Gorkunov, E.S., Savrai, R.A., Kogan, L.Kh., and Rogovaya, S.A., Application of an Eddy-Current Method for the Assessment of Stored Plastic Deformation and Residual Mechanical Properties after Cyclic Loading of an Annealed Medium-Carbon Steel, Defektoskopiya, 2007, no. 4, pp. 24–30 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2007, vol. 43, no. 4, p. 228–233].

  7. Sun, W.X., Nishida, S., Hattori, N., and Usui, I., Fatigue Properties of Cold-Rolled Notched Eutectoid Steel, Int. J. Fatigue, 2004, vol. 26, no. 11, pp. 1139–1145.

    Article  CAS  Google Scholar 

  8. Nalla, R.K., Altenberger, I., Noster, U., Liu, G.Y., Scholtes, B., and Ritchie, R.O., On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, vol. 355, nos. 1–2, pp. 216–230.

    Google Scholar 

  9. H. Sasahara, The Effect on Fatigue Life of Residual Stress and Surface Hardness Resulting from Different Cutting Conditions of 0.45% C Steel, Int. J. Mach. Tools Manufact., 2005, vol. 45, no. 2, pp. 131–136.

    Article  Google Scholar 

  10. Roland, T., Retraint, D., Lu, K., and Lu, J., Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, vol. 54, no. 11, pp. 1949–1954.

    Article  CAS  Google Scholar 

  11. Tian, J.W., Villegas, J.C., Yuan, W., Fielden, D., Shaw, L., Liaw, P.K., and Klarstrom, D.L., A Study of the Effect of Nanostructured Surface Layers on the Fatigue Behaviors of a C-2000 Superalloy, Mater. Sci. Eng. A, 2007, vol. 468–470, pp. 164–170.

    Google Scholar 

  12. Nikitin, I., Altenberger, I., Maier, H.J., and Scholtes, B., Mechanical and Thermal Stability of Mechanically Induced Near-Surface Nanostructures, Mater. Sci. Eng. A, 2005, vol. 403, nos. 1–2, pp. 318–327.

    Google Scholar 

  13. Mordyuk, B.N. and Prokopenko, G.I., Ultrasonic Impact Peening for the Surface Properties Management, J. Sound Vibr., 2007, vol. 308, nos. 3–5, pp. 855–866.

    Article  Google Scholar 

  14. Guechichi, H. and Castex, L., Fatigue Limits Prediction of Surface Treated Materials, J. Mater. Process. Technol., 2006, vol. 172, no. 3, pp. 381–387.

    Article  CAS  Google Scholar 

  15. Makarov, A.V. and Korshunov, L.G., Increasing Hardness and Wear Resistance of Laser-Hardened Steel surfaces by Rubbing, J. Frict. Wear, 2003, vol. 24, no. 3, pp. 62–66.

    Google Scholar 

  16. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Solodova, I.L., Raising the Heat and Wear Resistances of Hardened Carbon Steels by Friction Strengthening Ttreatment, Metalloved. Term. Obrab. Met., 2007, no. 3, pp. 57–62 [Metal Sci. Heat Treatment (Engl. Transl.), 2007, vol. 49, no. 3–4, pp. 150–156.

  17. Makarov, A.V. and Korshunov, L.G., Strength and Wear Resistance of Nanocrystalline Structures of the Friction Surfaces of Martensite-Based Steels, Izv. Vyssh. Ucheb. Zaved., Fiz., 2004, no. 8, pp. 65–80.

  18. Terent’ev, V.F., Ustalostnaya prochnost’ metallov i splavov (Fatigue Strength of Metals and Alloys), Moscow: Intermet Inzhiniring, 2002.

    Google Scholar 

  19. Shcherbinin, V.E. and Gorkunov, E.S., Magnitnyi kontrol’ kachestva metallov (Magnetic Quality Control for Metals), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

    Google Scholar 

  20. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., Kolobylin, Yu.M., Korshunov, L.G., and Osintseva, A.L., Features of Electromagnetic Methods for Testing the Wear Resistance of Medium-Carbon Structural Steel Subjected to Laser or Bulk Hardening and Tempering, Defektoskopiya, 2006, no. 7, pp. 28–39 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2006, vol. 42, no. 7, pp. 443–451].

  21. Dorofeev, A.L., Induktsionnaya strukturoskopiya (Induction Testing of Structure), Moscow: Energiya, 1973.

    Google Scholar 

  22. Heilmann, P., Clark, W.A., and Rigney, D.A., Orientation Determination of Subsurface Cells Generated Sliding, Acta Metall., 1983, vol. 31, no. 8, pp. 1293–1305.

    Article  CAS  Google Scholar 

  23. Makarov, A.V., Korshunov, L.G., Solodova, I.L., and Malygina, I.Yu., Hardness, Heat Resistance, and Tribilogical Properties of Quenched Carbon Steels Hardened by Sliding Friction, Deform. Razrush. Mater., 2006, no. 4, pp. 26–33.

  24. Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods for Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

    Google Scholar 

  25. Jiles, D.C., The Effect of Compressive Plastic Deformation of AISI 4130 Steels with Various Microstructures, J. Phys. D: Appl. Phys., 1998, no. 21, pp. 1196–1204.

  26. Thompson, S.M. and Tanner, B.K., The Magnetic Properties of Specially Prepared Pearlitic Steels of Varying Carbon Content as Functions of Plastic Deformation, J. Magn. Magn. Mater., 1994, vol. 132, pp. 71–88.

    Article  CAS  Google Scholar 

  27. Shif, I.M. and Neizvestnov, B.M., Magnetic Monitorig of Plastic-Strain-Hardened Surface Layer of Steel Articles, Defektoskopiya, 1965, no. 6, pp. 27–35.

  28. Rodigin, N.M., Pravdin, L.S., Syrochkin, V.P., Sirotkin, B.A., Utochkin, R.N., and Sukhanov, V.D., Eddy-Current Monitoring of Strain Hardening of Steel Shafts. Part III, Defektoskopiya, 1970, no. 4, pp. 120–136.

  29. Nichipuruk, A.P., Noskova, N.I., Gorkunov, E.S., and Ponomareva, E.G., Effect of Plastic-Deformation-Induced Dislocation Structure on the Magnetic and Magnitoelastic Properties of Iron and Low-Carbon Steels, Fiz. Met. Metalloved., 1992, no. 12, pp. 81–87.

  30. Kuleev, V.G., Tsar’kova, T.P., and Nichipuruk, A.P., Specific Features of the Behavior of the Coercive Force in Low-Carbon Plastically Deformed Steels, Defektoskopiya, 2005, no. 5, pp. 24–38 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2005, vol. 41, no. 5, pp. 285–295].

  31. Kuleev, V.G., Tsar’kova, T.P., and Nichipuruk, A.P., Effect of Tensile Plastic Deformations on the Residual Magnetization and Initial Permeability of Low-Carbon Steels, Defektoskopiya, 2006, no. 4, pp. 61–74. [Rus. J. Nondestruct. Test. (Engl. Transl.), 2006, vol. 42, no. 4, pp. 261–271].

  32. Pal’a, J., Stupakov, O., Bydzovsky, J., Tomas, I., and Novak, V., Magnetic Behavior of Low-Carbon Steel in Parallel and Perpendicular Directions to Tensile Deformation, J. Magn. Magn. Mater., 2007, vol. 310, no. 1, pp. 57–62.

    Article  CAS  Google Scholar 

  33. Stupakov, O., Pal’a, J., Tomasn, I., Bydzovsky, J., and Novak, V., Investigation of Magnetic Response To Plastic Deformation of Low-Carbon Steel, Mater. Sci. Eng. A, 2007, vol. 462, nos. 1–2, pp. 315–354.

    Google Scholar 

  34. Gorkunov, E.S., Smirnov, S.V., and Rodionova, S.S., Effect of Plastic Deformation under Hydrostatic Pressure on the Damage and Magnetic Characteristics of Low-Carbon Steel, Fiz. Mezomekh., 2003, vol. 6, no., 5, pp. 101–108.

    CAS  Google Scholar 

  35. Gorkunov, E.S., Grachev, S.V., Smirnov, S.V., Somova, V.M., Zadvorkin, S.M., and Kar’kina, L.E., Effect of Large Drawing Deformations on the Mechanical Properties of Patented Steel Wire, Fiz. Met. Metalloved., 2004, vol. 98, no. 5, pp. 85–97.

    CAS  Google Scholar 

  36. Kostin, V.N., Kadrov, A.V., and Kuskov, A.E., Magnetic Properties of a Material Used to Estimate Elastic and Plastic Strains of Ferrite-Pearlite Steels, Defektoskopiya, 2005, no. 10, pp. 13–22 [Rus. J. Nondestruct. Test. (Engl. Transl.), 2005, vol. 41, no. 10, pp. 632–639].

  37. Gorkunov, E.S., Smirnov, S.V., Zadvorkin, S.M., Vichuzhanin, D.I., and Mitropol’skaya, S.Yu., Effect of Accumulated Shear Deformation and Damage during Alternating-Sign Torsion on the Magnitic Characteristics of Steerl, in Trudy II Evraziiskogo Simpoziuma po problema prochnosti materialov i mashin dlya regionov kholodnogo klimata (Proceedings of the 2nd Eurasian Symp. on Problems of Strength of Materials and Machines for Regions of Cold Climate), Yakutsk: 2004, Ch. 1, pp. 69–76.

  38. Ivanova, V.S., Orlov, L.G., Terent’ev, V.F., and Poida, V.G., Features of the Evolution of Dislocation Structure during Static and Cyclic Loading of Low-Carbon Steels, Fiz. Met. Metalloved., 1972, vol. 33, no. 3, pp. 627–633.

    CAS  Google Scholar 

  39. Treuble, G. and Zeger, A., Effect of Crystal Lattice Defects on the Magnetization of Ferromagnetic Single Crystals, in Plasticheskaya deformatsiya monokristallov (Plastic Deformaiton of Single Crystals), Moscow: Mir, 1996, pp. 201–264 [in Russian].

    Google Scholar 

  40. Kuznetsov, I.A., Tsar’kova, T.P., and Shepelev, E.V., Magnetic, Electrical, and Mechanical Properties of Cold-Deformed and Heat-Treated 11YuA Steel, Defektoskopiya, 1978, no. 1, pp. 22–29.

  41. Rodionova, S.S., Kuznetsov, I.A., and Gorkunov, E.S., Mechanical Properties of Strain-Hardened 10GNA Steel, Defektoskopiya, 1998, no. 6, pp. 60–70.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, R.A. Savrai, E.S. Gorkunov, I.Yu. Malygina, L.Kh. Kogan, N.A. Pozdejeva, Yu.M. Kolobylin, 2008, published in Defektoskopiya, 2008, Vol. 44, No. 7, pp. 74–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Savrai, R.A., Gorkunov, E.S. et al. Effect of friction-induced hardening on the features of magnetic and eddy-current behavior of an annealed structural steel under cyclic loading conditions. Russ J Nondestruct Test 44, 496–508 (2008). https://doi.org/10.1134/S1061830908070085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830908070085

Keywords

Navigation