Skip to main content
Log in

Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

During operation, the surfaces of parts made of austenitic chromium–nickel steels are subjected to intense cyclically repeated contact loads, including shock loads. Therefore, an urgent task is to study contact fatigue and develop methods for nondestructive testing of fatigue degradation of such steels. The aim of this work is to study the possibility of conducting eddy current testing of fatigue degradation under contact loading of AISI 321 austenitic steel. Mechanical tests for contact gigacycle fatigue were carried out according to the scheme of a pulsating shock “plane-plane” contact with an ultrasonic loading frequency. It is shown that eddy current monitoring of fatigue degradation under contact loading of AISI 321 steel is possible, but it has certain limitations due to the nonmonotonic change in the readings of the eddy current device \(\alpha \) vs the number of loading cycles. In this case, the ascending branch can be used to control the degree of destruction of the surface layer by taking into account the ambiguous nature of the dependences of the readings of the eddy current device on the number of loading cycles in the inspection procedure. The inspection can be carried out by taking the readings of the eddy-current device at the eddy-current transducer excitation frequency \(f = 124\) kHz. In this case, the surface layers, where the fatigue degradation processes develop intensively affecting the physical characteristics of the steel, are analyzed to a greater extent. The quantitative ratio of austenite and deformation martensite in the testing zone has the greatest effect on the value of \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Silva, V.M.A., Camerini, C.G., Pardal, J.M., de Blás, J.C.G., and Pereira, G.R., Eddy current characterization of cold-worked AISI 321 stainless steel, J. Mater. Res. Technol., 2018, vol. 7, no. 3, pp. 395–401.

    Article  CAS  Google Scholar 

  2. Liu, K., Zhao, Z., and Zhang, Z., Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel, J. Mater. Eng. Perform., 2012, vol. 21, no. 8, pp. 1772–1776.

    Article  CAS  Google Scholar 

  3. Khan, S.H., Ali, F., Nusair Khan, A., and Iqbal, M.A., Eddy current detection of changes in stainless steel after cold reduction, Comput. Mater. Sci., 2008, vol. 43, no. 4, pp. 623–628.

    Article  CAS  Google Scholar 

  4. De Backer, F., Schoss, V., and Maussner, G., Investigations on the evaluation of the residual fatigue lifetime in austenitic stainless steels, Nucl. Eng. Des., 2001, vol. 206, no. 2—3, pp. 201–219.

    Article  CAS  Google Scholar 

  5. Mishakin, V., Gonchar, A., Kurashkin, K., and Kachanov, M., Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data, Int. J. Fatigue, 2020, vol. 141, pp. 1–6, article ID 105846.

  6. Corte, J.S., Rebello, J.M.A., Areiza, M.C.L., Tavares, S.S.M., and Araujo, M.D., Failure analysis of AISI 321 tubes of heat exchanger, Eng. Failure Anal., 2015, vol. 56, pp. 170–176.

    Article  CAS  Google Scholar 

  7. Wilam, M. and Čermáková, I., Integrity of VVER steam generator tubes, Theor. Appl. Fract. Mech., 1995, vol. 23, no. 2, pp. 151–153.

    Article  Google Scholar 

  8. Klyushnikov, V.A., Influence of plastic deformation temperature on ultrasonic and electromagnetic properties of austenitic steel, Mater. Today: Proc., 2019, vol. 19, pp. 2320–2322.

    CAS  Google Scholar 

  9. Walther, F. and Eifler, D., Cyclic deformation behavior of steels and light-metal alloys, Mater. Sci. Eng. A, 2007, vol. 468—470, pp. 259–266.

    Article  Google Scholar 

  10. Niffenegger, M. and Leber, H.J., Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue, J. Nucl. Mater., 2008, vol. 377, no. 2, pp. 325–330.

    Article  CAS  Google Scholar 

  11. Mishakin, V.V., Klyushnikov, V.A., Gonchar, A.V., and Kachanov, M., On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring, Int. J. Eng. Sci., 2019, vol. 135, pp. 17–22.

    Article  CAS  Google Scholar 

  12. Lang, M., Johnson, J., Schreiber, J., Dobmann, G., Bassler, H.-J., Eifler, D., Ehrlich, R., and Gampe, U., Cyclic deformation behaviour of AISI 321 austenitic steel and its characterization by means of HTCSQUID, Nucl. Eng. Des., 2000, vol. 198, no. 1—2, pp. 185–191.

    Article  CAS  Google Scholar 

  13. Das, A., Magnetic properties of cyclically deformed austenite, J. Magn. Magn. Mater., 2014, vol. 361, pp. 232–242.

    Article  CAS  Google Scholar 

  14. Dobmann, G., Fatigue monitoring by NDT of austenitic stainless steel at ambient temperature and 300°C and new attempts to monitor a fracture mechanics test, Procedia Eng., 2014, vol. 86, pp. 384–394.

    Article  CAS  Google Scholar 

  15. Novotný, P., Sajdl, P., and Macháč, P., A magneto-optic imager for NDT applications, NDT & E Int., 2004, vol. 37, no. 8, pp. 645–649.

    Article  Google Scholar 

  16. Zamaraev, L.M., Smirnov, S.V., and Matafonov, P.P., Investigation of the thermocyclic durability of 12Kh18N10T steel in hydrogen and air environments, Probl. Mech. Eng. Reliab. Mach., 2008, no. 2, pp. 46–49.

  17. Dobromyslov, A.V. and Taluts, N.I., An electron-microscopic study of the deformation structure of the 12KH18N10T steel after explosive loading in spherical systems, Diagn., Resour. Mech. Mater. Struct., 2015, no. 5, pp. 109–117. https://doi.org/10.17804/2410-9908.2015.5.109-117

  18. Savrai, R.A., Gorkunov, E.S., Soboleva, N.N., Malygina, I.Y., Osintseva, A.L., Makarov, A.V., and Kogan, L.K., Eddy-current testing of fatigue degradation under contact loading of NiCrBSi coatings obtained through gas–powder laser cladding, Russ. J. Nondestr. Test., 2015, vol. 51, no. 11, pp. 692–704.

    Article  CAS  Google Scholar 

  19. Savrai, R.A., Makarov, A.V., Gorkunov, E.S., Soboleva, N.N., Kogan, L.Kh., Malygina, I.Yu., Osintseva, A.L., and Davydova, N.A., Eddy-current testing of the fatigue degradation of a gas powder laser clad NiCrBSi— Cr3C2 composite coating under contact fatigue loading, AIP Conf. Proc., 2017, vol. 1915, article ID 040049, pp. 1–4. https://doi.org/10.1063/1.5017397

  20. Savrai, R.A., Makarov, A.V., Gorkunov, E.S., Soboleva, N.N., Kogan, L.Kh., Malygina, I.Yu., and Osintseva, A.L., Eddy-current testing of fatigue degradation in additionally heat-treated gas powder laser clad NiCrBSi coating under contact fatigue loading, AIP Conf. Proc., 2018, vol. 2053, pp. 1–4, article ID 040088. https://doi.org/10.1063/1.5084526.

  21. Savrai, R.A., Kogan, L.Kh., Makarov, A.V., and Soboleva, N.N., Features of eddy-current testing of the fatigue degradation of laser clad cobalt-nickel-chromium coating under contact loading, Lett. Mater., 2020, vol. 10, no. 3, pp. 315–321.

    Article  Google Scholar 

  22. Bakunov, A.S., Muzhitskii, V.F., and Shubochkin, S.E., A modern solution to problems of eddy-current structuroscopy, Russ. J. Nondestr. Test., 2004, vol. 40, no. 5, pp. 346–349.

    Article  Google Scholar 

  23. Savrai, R.A., Malygina, I.Yu., and Kolobylin, Yu.M., An approach to eddy-current evaluation of the structural state in a cast aluminum–silicon alloy subjected to surface laser heat treatment, J. Nondestr. Eval., 2019, vol. 38, no. 3, pp. 1–7, article ID 81.

  24. Savrai, R.A., Makarov, A.V., Osintseva, A.L., and Malygina, I.Yu., Estimating the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests, J. Mater. Eng. Perform., 2018, vol. 27, no. 2, pp. 601–611.

    Article  CAS  Google Scholar 

  25. RF patent no. 162959, 2016.

  26. Ozgowicz, W. and Kurc, A., The effect of the cold rolling on the structure and mechanical properties in austenitic stainless steels type 18-8, Arch. Mater. Sci. Eng., 2009, vol. 38, no. 1, pp. 26–33.

    Google Scholar 

  27. Dorofeev, A.L., Induktsionnaya strukturoskopiya (Induction Structuroscopy), Moscow: Energy, 1973.

    Google Scholar 

  28. Dyakin, V.V. and Sandovskii, V.A., Teoriya i raschet vikhretokovykh preobrazovatelei (Theory and Calculation of Attached Eddy Current Transducers), Moscow: Nauka, 1981.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Scanning electron microscopy and mechanical tests were performed at the Plastometriya Shared Use Center of Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences. The authors deeply appreciate the participation of A.L. Osintseva in the experimental research.

Funding

The work was carried out within the framework of the state assignments of the IES UB RAS on topic no. AAAA-A18-118020790147-4 and IPM UB RAS on topic “Diagnostics”, no. AAAA-A18-118020690196-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Savrai or L. Kh. Kogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savrai, R.A., Kogan, L.K. Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading. Russ J Nondestruct Test 57, 393–400 (2021). https://doi.org/10.1134/S1061830921050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921050119

Keywords:

Navigation