Skip to main content
Log in

Genome-wide mapping of copy number variations in commercial hybrid pigs using a high-density SNP genotyping array

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Copy number variations (CNVs) are important forms of structural variation in human and animals and can be considered as a major genetic component of phenotypic diversity. Here we used the Illumina PorcineSNP60 BeadChip V2 and a DLY [Duroc × (Large White × Landrace)] commercial hybrid population to identify 272 CNVs belonging to 165 CNV regions (CNVRs), of which 66 are new. As CNVRs are specific to origin of population, our DLY-specific data is an important complementary to the existing CNV map in the pig genome. Eight CNVRs were selected for validation by quantitative real-time PCR (qRT-PCR) and the accurate rate was high (87.25%). Gene function analysis suggested that a common CNVR may play an important role in multiple traits, including growth rate and carcass quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lankin, V.S., Genotypic and modification variability of passive-defensive behavior toward humans in domestic pigs, Russ. J. Genet: Appl. Res., 2014, vol. 4, no. 1, pp. 60–73.

    Article  Google Scholar 

  2. Nikitin, S.V., Knyazev, S.P., and Ermolaev, V.I., Model of genetic control of the number and location of nipples in domestic pig, Russ. J. Genet., 2012, vol. 48, no. 11, pp. 1128–1140.

    Article  CAS  Google Scholar 

  3. Stankiewicz, P. and Lupski J.R., Structural variation in the human genome and its role in disease, Annu. Rev. Med., 2010, vol. 61, pp. 437–455.

    Article  CAS  PubMed  Google Scholar 

  4. Conrad, D.F., Dalila, P., Richard, R., et al., Origins and functional impact of copy number variation in the human genome, Nature, 2010, vol. 464, no. 7289, pp. 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srivastava, P.P., Kar, P.K., Awasthi, A.K., and Urs, S.R., Identification and association of ISSR markers for thermal stress in polyvoltine silkworm Bombyx mori, Russ. J. Genet., 2007, vol. 43, no. 8. pp. 858–864.

    Article  CAS  Google Scholar 

  6. Li, W., Zhang, D.F., Wei, Y.M., et al., Genetic diversity of Triticum turgidum L. based on microsatellite markers, Russ. J. Genet., 2006, vol. 42, no. 3, pp. 311–316.

    Article  CAS  Google Scholar 

  7. Terman, A. and Kumalska, M., The effect of a SNP in ESR gene on the reproductive performance traits in Polish sows, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1260–1263.

    Article  CAS  Google Scholar 

  8. Henrichsen, C.N., Chaignat, E., and Reymond, A., Copy number variants, diseases and gene expression, Hum. Mol. Genet., 2009, vol. 18, no. R1, pp R1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, F. and Gu, W.M., Copy number variation in human health, disease, and evolution, Annu. Rev. Genomics Hum. Genet., 2009, vol. 10, pp. 451–481.

    Article  CAS  Google Scholar 

  10. Victor, G., Kathrin, S., Tatjana, A., et al., Distribution and functional impact of DNA copy number variation in the rat, Nat. Genet., 2008, vol. 40, no. 5, pp. 538–545.

    Article  Google Scholar 

  11. Nicholas, T.J., Cheng, Z., Ventura, M., et al., The genomic architecture of segmental duplications and associated copy number variants in dogs, Genome Res., 2009, vol. 19, no. 3, pp. 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffin, D.K., Robertson, L.B., Tempest, H.G., et al., Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution, BMC Genomics, 2008, vol. 9, p. 168.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hou, Y., Liu, G.E., Bickhart, D.M., et al., Genomic characteristics of cattle copy number variations, BMC Genomics, 2011, vol. 12, p. 127.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Doan, R., Identification of copy number variants in horses, Genome Res., 2012, vol. 22, no. 5, pp. 899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirov, G., The role of copy number variation in schizophrenia, Expert Rev. Neurother., 2010, vol. 10, no. 1, pp. 25–32.

    Article  CAS  PubMed  Google Scholar 

  16. Sha, B.Y., Yang, T.L., Zhao, L.J., et al., Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population, J. Hum. Genet., 2009, vol. 54, no. 4, pp. 199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harteveld, C.L. and Higgs, D.R., Alpha-thalassaemia, Orphanet J. Rare Dis., 2010, vol. 5, p. 13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xudong, L., Linghan, G., Aman, Z., et al., Identification of duplication downstream of BMP2 in a Chinese family with brachydactyly type A2 (BDA2), PLoS One, 2014, vol. 9, no. 4. e94201

    Article  Google Scholar 

  19. Wright, D., Boije, H., Meadows, et al., Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens, PLoS Genet., 2009, vol. 5, no. 6. e1000512

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rosengren, P.G., Golovko, A., Sundstrom, E., et al., A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse, Nat. Genet., 2008, vol. 40, no. 8, pp. 1004–1009.

    Article  Google Scholar 

  21. Fontanesi, L., Beretti, F., Riggio, V., et al., Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors, Cytogenet. Genome Res., 2009, vol. 126, no. 4, pp. 333–347.

    Article  CAS  PubMed  Google Scholar 

  22. Johansson, A., Pielberg, G., Andersson, L., and Edfors-Lilja, I., Polymorphism at the porcine Dominant white/KIT locus influence coat colour and peripheral blood cell measures, Anim. Genet., 2005, vol. 36, no. 4, pp. 288–296.

    Article  CAS  PubMed  Google Scholar 

  23. Pielberg, G., Olsson, C., Syvanen, A.C., and Andersson, L., Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig, Genetics, 2002, vol. 160, no. 1, pp. 305–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramayo-Caldas, Y., Castelló, A., Pena, R.N., et al., Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip, BMC Genomics, 2010, vol. 11, p. 593.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, C., Qiao, R., Wei, R., et al., A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits, BMC Genomics, 2012, vol. 13, p. 733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Y., Mei, S.Q., Zhang, X.Y., et al., Identification of genome-wide copy number variations among diverse pig breeds by array CGH, BMC Genomics, 2012, vol. 13, p. 725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carl-Johan, Rubin, Hendrik Jan, et al., Strong signatures of selection in the domestic pig genome, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 48, pp. 19529–19536.

    Article  Google Scholar 

  28. Wang, J., Jiang, J., Fu, W., et al., A genome-wide detection of copy number variations using SNP genotyping arrays in swine, BMC Genomics, 2012, vol. 13, p. 273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paudel, Y., Madsen, O., Megens, H.J., et al., Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication, BMC Genomics, 2013, vol. 14, p. 449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiying, W., Haifei, W., Jicai, J., et al., Identification of genome-wide copy number variations among diverse pig breeds using SNP genotyping arrays, PLoS One, 2013, vol. 8, no. 7. e68683

    Article  Google Scholar 

  31. Wang, L., Liu, X., Zhang, L., et al., Genome-wide copy number variations inferred from SNP genotyping arrays using a Large White and Minzhu intercross population, PLoS One, 2013, vol. 8, no. 10. e74879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, J., Jiang, J., Wang, et al., Enhancing genomewide copy number variation identification by high density array CGH using diverse resources of pig breeds, PLoS One, 2014, vol. 9, no. 1. e87571

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, K., Li, M., Hadley, D., et al., PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data, Genome Res., 2007, vol. 17, no. 11, pp. 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Redon, R., Ishikawa, S., Fitch, K.R., et al., Global variation in copy number in the human genome, Nature, 2006, vol. 444, no. 7118, pp. 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  36. Ballester, M., Castelló, A., Ibánez, E., et al., Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals, Biotechniques, 2004, vol. 37, no. 4, pp. 610–613.

    CAS  PubMed  Google Scholar 

  37. Ramos, A.M., Crooijmans, R.P.M.A., Affara, N.A., et al., Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology, PLoS One, 2009, vol. 4, no. 8. e6524

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, G.E., Hou, Y.B., Cardone, M.F., et al., Analysis of copy number variations among diverse cattle breeds, Genome Res., 2010, vol. 20, no. 5, pp. 693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winchester, L., Yau, C., and Ragoussis, J., Comparing CNV detection methods for SNP arrays, Briefings Funct. Genomics Proteomics, 2009, vol. 8, no. 5, pp. 353–366.

    Article  CAS  Google Scholar 

  40. Diskin, S.J., Li, M., Hou, C., et al., Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms, Nucleic Acids Res., 2008, vol. 36, no. 19, p. 126.

    Article  Google Scholar 

  41. Fadista, J., Nygaard, M., Holm, L.E., et al., A snapshot of CNVs in the pig genome, PLoS One, 2008, vol. 3, no. 12. e3916

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Smith, A.J., Walters, R.G., Froguel, P., and Blakemore, A.I., Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease, Cytogenet. Genome Res., 2008, vol. 123, nos. 1–4, pp. 17–26.

    Article  PubMed  Google Scholar 

  43. Young, J.M., Endicott, R.M., Parghi, S.S., et al., Extensive copy-number variation of the human olfactory receptor gene family, Am. J. Hum. Genet., 2008, vol. 83, no. 2, pp. 228–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hussain, A., Saraiva, L.R., and Korsching, S.I., Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 11, pp. 4313–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaur, U., Xiong, Y., Luo, Q., et al., Breed-specific transcriptome response of spleen from six to eight week old piglet after infection with Streptococcus suis type 2, Mol. Biol. Rep., 2014, pp. 1–9.

    Google Scholar 

  46. Li, B. and Trueb, B., DRG represents a family of two closely related GTP-binding proteins, Biochim. Biophys. Acta, Gene Struct. Expression, 2000, vol. 1491, no. 1, pp. 196–204.

    Article  CAS  Google Scholar 

  47. Grötsch, H., Kunert, M., Mooslenhner, K.A., et al., RWDD1 interacts with the ligand binding domain of the androgen receptor and acts as a coactivator of androgen-dependent transactivation, Mol. Cell. Endocrinol., 2012, vol. 358, no. 1, pp. 53–62.

    Article  PubMed  Google Scholar 

  48. Victoria, A., Payne, Neil, et al., The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation, Diabetes, 2008, vol. 57, no. 8, pp. 2055–2060.

    Article  Google Scholar 

  49. Zayed, H., Chao, R., Moshrefi, A., et al., A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect, Am. J. Med. Genet., 2010, vol. 152A, no. 4, pp. 916–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chao, R., Nevin, L., Agarwal, P., et al., A male with unilateral microphthalmia reveals a role for TMX3 in eye development, PLoS One, 2010, vol. 5, no. 5. e10565

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hulsen, J. and Scheepens, K., Pig Signals: Look Think and Act, Jan Hulsen, V., Ed., ROODBONT, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Ma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L.S., Li, J., Yang, J. et al. Genome-wide mapping of copy number variations in commercial hybrid pigs using a high-density SNP genotyping array. Russ J Genet 52, 85–92 (2016). https://doi.org/10.1134/S1022795415120145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415120145

Keywords

Navigation