Skip to main content

Advertisement

Log in

Advances and Perspectives in the Application of CRISPR-Cas9 in Livestock

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The sophistication and revolution in genome editing and manipulation have revolutionized livestock by harvesting essential biotechnological products such as drugs, proteins, and serum. It laid down areas for the large production of transgenic food, resistance against certain diseases such as mastitis, and large production of milk and leaner meat. Nowadays, the increasing demand for animal food and protein is fulfilled using genome-editing technologies. The recent genome-editing techniques have overcome the earlier methods of animal reproduction, such as cloning and artificial embryo transfer. The genome of animals now is modified using the recent alteration techniques such as ZFNs, TALENS technique, and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR-Cas9) system. The literature was illustrated for identifying the researchers to address the advances and perspectives in the application of Cas9 in Livestock. Cas9 is considered better than the previously identified techniques in livestock because of the production of resilience against diseases, improvement of reproductive traits, and animal production to act as a model biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shah, U. N., Gnanasekaran, S., Mondal, S., Reddy, I., Nandi, S., Gupta, P. and Das, D. (2021). RNAi for livestock improvement. Advances in Animal Genomics, Elsevier, pp. 91–107

  2. Sinha, R., & Shukla, P. (2019). Current trends in protein engineering: Updates and progress. Current Protein and Peptide Science, 20, 398–407.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta, S. K., & Shukla, P. (2017). Gene editing for cell engineering: Trends and applications. Critical Reviews in Biotechnology, 37, 672–684.

    Article  CAS  PubMed  Google Scholar 

  4. Tyagi, S., Choudhary, R., Das, A., Won, S. Y., & Shukla, P. (2020). CRISPR-Cas9 system: A genome-editing tool. Journal of Biotechnology, 319, 36.

    Article  CAS  PubMed  Google Scholar 

  5. Islam, M., Rony, S. A., Rahman, M. B., Cinar, M. U., Villena, J., Uddin, M. J., & Kitazawa, H. (2020). Improvement of disease resistance in livestock: Application of immunogenomics and CRISPR/Cas9 technology. Animals, 10, 2236.

    Article  PubMed Central  Google Scholar 

  6. Menchaca, A., dos Santos-Neto, P., Mulet, A., & Crispo, M. (2020). New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology, 86, 160–169.

    Article  CAS  Google Scholar 

  7. Foulkes, A. L., Soda, T., Farrell, M., Giusti-Rodríguez, P., & Lázaro-Muñoz, G. (2019). Legal and ethical implications of CRISPR applications in psychiatry. North Carolina Law Review, 97, 1359.

    PubMed  PubMed Central  Google Scholar 

  8. Xie, K., Zhang, J., & Yang, Y. (2014). Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Molecular Plant, 7, 923–926.

    Article  CAS  PubMed  Google Scholar 

  9. Mali, F. (2020). Is the patent system the way forward with the CRISPR-Cas 9 technology? Science & Technology Studies, 33, 2–23.

    Article  Google Scholar 

  10. Onteru, S. K., Ampaire, A., & Rothschild, M. F. (2010). Biotechnology developments in the livestock sector in developing countries. Biotechnology and Genetic Engineering Reviews, 27, 217–228.

    Article  PubMed  Google Scholar 

  11. Green, M. R., & Sambrook, J. (2018). The basic polymerase chain reaction (PCR). Cold Spring Harbor Protocol, 2018, 5. https://doi.org/10.1101/pdb.prot095117

    Article  Google Scholar 

  12. Wen, H., Vuitton, L., Tuxun, T., Li, J., Vuitton, D. A., Zhang, W., & McManus, D. P. (2019). Echinococcosis: Advances in the 21st century. Clinical Microbiology Reviews, 32, e00075.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, N., Wang, Y., Ye, Q., Yang, Y., Wan, J., Guo, C., Zhan, J., Gu, X., Lai, W., & Xie, Y. (2018). Development of a direct PCR assay to detect Taenia multiceps eggs isolated from dog feces. Veterinary Parasitology, 251, 7–11.

    Article  CAS  PubMed  Google Scholar 

  14. García-Sancho, M. (2015). Animal breeding in the age of biotechnology: The investigative pathway behind the cloning of Dolly the sheep. History and Philosophy of the Life Sciences, 37, 282–304.

    Article  PubMed  Google Scholar 

  15. Mondal, S., Mor, A., Reddy, I., Nandi, S., Gupta, P., & Mishra, A. (2019). In vitro embryo production in sheep. In comparative embryo culture (pp. 131–140). New York: Springer.

    Book  Google Scholar 

  16. Su, Y., Zhu, J., Salman, S., & Tang, Y. (2020). Induced pluripotent stem cells from farm animals. Journal of Animal Science, 98, 343.

    Article  Google Scholar 

  17. Soto, D. A., & Ross, P. J. (2016). Pluripotent stem cells and livestock genetic engineering. Transgenic Research, 25, 289–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B. A., & Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences, 109, 17382–17387.

    Article  CAS  Google Scholar 

  19. Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., McLaren, D. G., & Whitelaw, C. B. A. (2015). Genome edited sheep and cattle. Transgenic Research, 24, 147–153.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, K., Uh, K., & Farrell, K. (2020). Current progress of genome editing in livestock. Theriogenology, 150, 229–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., Su, F., Pan, S., Luo, Y., & Guo, Z. (2014). Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proceedings of the Royal Society B Biological Sciences, 281, 20133368.

    Article  PubMed Central  CAS  Google Scholar 

  23. Luo, Y., Wang, Y., Liu, J., Cui, C., Wu, Y., Lan, H., Chen, Q., Liu, X., Quan, F., & Guo, Z. (2016). Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Scientific Reports, 6, 1–11.

    CAS  Google Scholar 

  24. Broeders, M., Herrero-Hernandez, P., Ernst, M. P., van der Ploeg, A. T., & Pijnappel, W. P. (2020). Sharpening the molecular scissors: Advances in gene-editing technology. iScience, 23(1), 100789.

    Article  CAS  PubMed  Google Scholar 

  25. Su, X., Cui, K., Du, S., Li, H., Lu, F., Shi, D., & Liu, Q. (2018). Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. Vitro Cellular & Developmental Biology-Animal, 54, 375–383.

    Article  CAS  Google Scholar 

  26. Ruan, J., Xu, J., Chen-Tsai, R. Y., & Li, K. (2017). Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Research, 26, 715–726.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., & Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18, 1–15.

    Article  CAS  Google Scholar 

  28. Whitworth, K. M., Rowland, R. R., Ewen, C. L., Trible, B. R., Kerrigan, M. A., Cino-Ozuna, A. G., Samuel, M. S., Lightner, J. E., McLaren, D. G., & Mileham, A. J. (2015). Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 34, 20.

    Article  PubMed  CAS  Google Scholar 

  29. Bi, Y., Hua, Z., Liu, X., Hua, W., Ren, H., Xiao, H., Zhang, L., Li, L., Wang, Z., & Laible, G. (2016). Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Scientific Reports, 6, 1–12.

    Article  CAS  Google Scholar 

  30. Guo, R., Wan, Y., Xu, D., Cui, L., Deng, M., Zhang, G., Jia, R., Zhou, W., Wang, Z., & Deng, K. (2016). Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Scientific Reports, 6, 1–10.

    CAS  Google Scholar 

  31. Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Polejaeva, I. A., & Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE, 9, e106718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., & Cai, B. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 5, 1–9.

    Google Scholar 

  33. Yu, B., Lu, R., Yuan, Y., Zhang, T., Song, S., Qi, Z., Shao, B., Zhu, M., Mi, F., & Cheng, Y. (2016). Efficient TALEN-mediated myostatin gene editing in goats. BMC Developmental Biology, 16, 1–8.

    Article  CAS  Google Scholar 

  34. Wells, K. D., & Prather, R. S. (2017). Genome-editing technologies to improve research, reproduction, and production in pigs. Molecular Reproduction and Development, 84, 1012–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, K.-E., Kaucher, A. V., Powell, A., Waqas, M. S., Sandmaier, S. E., Oatley, M. J., Park, C.-H., Tibary, A., Donovan, D. M., & Blomberg, L. A. (2017). Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2gene. Scientific Reports, 7, 1–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Butler, J. R., Martens, G. R., Estrada, J. L., Reyes, L. M., Ladowski, J. M., Galli, C., Perota, A., Cunningham, C. M., Tector, M., & Tector, A. J. (2016). Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: An alternative to direct complement regulation. Transgenic Research, 25, 751–759.

    Article  CAS  PubMed  Google Scholar 

  37. Hauschild, J., Petersen, B., Santiago, Y., Queisser, A.-L., Carnwath, J. W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P. D., & Schwinzer, R. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences, 108, 12013–12017.

    Article  CAS  Google Scholar 

  38. Petersen, B., Frenzel, A., Lucas-Hahn, A., Herrmann, D., Hassel, P., Klein, S., Ziegler, M., Hadeler, K. G., & Niemann, H. (2016). Efficient production of biallelic GGTA 1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation, 23, 338–346.

    Article  PubMed  Google Scholar 

  39. Reyes, L. M., Estrada, J. L., Wang, Z. Y., Blosser, R. J., Smith, R. F., Sidner, R. A., Paris, L. L., Blankenship, R. L., Ray, C. N., & Miner, A. C. (2014). Creating class I MHC–null pigs using guide RNA and the Cas9 endonuclease. The Journal of Immunology, 193, 5751–5757.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., Du, Y., Zhou, X., Wang, L., Li, J., Wang, F., Huang, Z., Huang, X., & Wei, H. (2016). Efficient generation of B2m-null pigs via injection of zygote with TALENs. Scientific Reports, 6, 38854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burkard, C., Lillico, S. G., Reid, E., Jackson, B., Mileham, A. J., Ait-Ali, T., Whitelaw, C. B. A., & Archibald, A. L. (2017). Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 13, e1006206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hai, T., Teng, F., Guo, R., Li, W., & Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 24, 372–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petersen, B. (2017). CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs. Reproduction in Domestic Animals, 52, 4–13.

    Article  CAS  PubMed  Google Scholar 

  44. Kalds, P., Zhou, S., Cai, B., Liu, J., Wang, Y., Petersen, B., Sonstegard, T., Wang, X., & Chen, Y. (2019). Sheep and goat genome engineering: From random transgenesis to the CRISPR era. Frontiers in Genetics, 10, 750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., Li, W., Liu, C., Peng, X., Lin, J., He, S., Li, X., Han, B., Zhang, N., & Wu, Y. (2017). Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Scientific Reports, 7, 1–10.

    CAS  Google Scholar 

  46. Williams, D. K., Pinzón, C., Huggins, S., Pryor, J. H., Falck, A., Herman, F., Oldeschulte, J., Chavez, M. B., Foster, B. L., & White, S. H. (2018). The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Scientific Reports, 8, 1–10.

    Google Scholar 

  47. Crispo, M., Mulet, A., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P., Nguyen, T., Crénéguy, A., Brusselle, L., & Anegón, I. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 10, e0136690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, X., Hao, F., Hu, X., Wang, H., Dai, B., Wang, X., Liang, H., Cang, M., & Liu, D. (2019). Generation of Tβ4 knock-in cashmere goat using CRISPR/Cas9. International Journal of Biological Sciences, 15, 1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian, H., Luo, J., Zhang, Z., Wu, J., Zhang, T., Busato, S., Huang, L., Song, N., & Bionaz, M. (2018). CRISPR/Cas9-mediated Stearoyl-CoA Desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells. Journal of Agricultural and Food Chemistry, 66, 10041–10052.

    Article  CAS  PubMed  Google Scholar 

  50. Niu, D., Wei, H.-J., Lin, L., George, H., Wang, T., Lee, I.-H., Zhao, H.-Y., Wang, Y., Kan, Y., & Shrock, E. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 357, 1303–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, H., & Wu, Z. (2018). Genome editing of pigs for agriculture and biomedicine. Frontiers in Genetics, 9, 360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kurtz, S., & Petersen, B. (2019). Pre-determination of sex in pigs by application of CRISPR/Cas system for genome editing. Theriogenology, 137, 67–74.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., & Yao, J. (2017). Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences, 114, E9474–E9482.

    Article  CAS  Google Scholar 

  54. Van Eenennaam, A. L. (2019). Application of genome editing in farm animals: Cattle. Transgenic Research, 28, 93–100.

    Article  PubMed  CAS  Google Scholar 

  55. Yum, S.-Y., Youn, K.-Y., Choi, W.-J., & Jang, G. (2018). Development of genome engineering technologies in cattle: From random to specific. Journal of Animal Science and Biotechnology, 9, 1–9.

    Article  CAS  Google Scholar 

  56. Miller, B. A., & Lu, C. D. (2019). Current status of global dairy goat production: An overview. Asian-Australasian Journal of Animal Sciences, 32, 1219.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Virtanen, A. I. (1966). Milk production of cows on protein-free feed. Science, 153, 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  58. Ikeda, M., Matsuyama, S., Akagi, S., Ohkoshi, K., Nakamura, S., Minabe, S., Kimura, K., & Hosoe, M. (2017). Harnessing endogenous repair mechanisms for targeted gene knock-in during pre-implantation development of bovine embryos. Scientific Reports, 7, 1–9.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our full acknowledgment to BioRender [https://biorender.com/] as an online tool for creating the figures in this review.

Author information

Authors and Affiliations

Authors

Contributions

HIA: designed the study, Primary draft was made by FZ, M, MHZ, ASUD, MAK, and AJ. NM: designed the figures. The manuscript was revised by AJ, MAK. All authors read the manuscript and have no conflict of interest.

Corresponding author

Correspondence to Hafiz Ishfaq Ahmad.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, A., Zulfiqar, F., Mahnoor, M. et al. Advances and Perspectives in the Application of CRISPR-Cas9 in Livestock. Mol Biotechnol 63, 757–767 (2021). https://doi.org/10.1007/s12033-021-00347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00347-2

Keywords

Navigation