Skip to main content
Log in

Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The results of analysis of the genome formation in interspecific hybrids of Triticum aestivum with T. timopheevii are reviewed. The spectra of substitutions and rearrangements are shown to depend on the genotypes of the parental forms and on the direction of selection. The frequencies of substitutions of individual T. timopheevii chromosomes significantly vary and reflect the level of their divergence relative to the common wheat chromosomes. Some aspects of classification of the At- and G-genome chromosomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Pshenitsa (The Wheat), Leningrad: Kolos, 1979.

    Google Scholar 

  2. Dvorák, J., Genome Analysis of the Polyploid Species in the Triticum-Aegilops Alliance, Proc. 9th Int. Wheat Genet. Symp., Slinkard, A.E., Ed., Saskatoon: Printcrafters, 1998, vol. 5, pp. 8–11.

    Google Scholar 

  3. Liu, C.J., Atkinson, M.D., Chinoy, C.N., et al., Nonhomoeologous Translocations between Group 4, 5 and 7 Chromosomes within Wheat and Rye, Theor. Appl. Genet., 1992, vol. 83, no. 3, pp. 305–312.

    Article  Google Scholar 

  4. Jiang, J. and Gill, B.S., Different Species-Specific Chromosome Translocations in Triticum timopheevii and T. turgidum Support the Diphyletic Origin of Polyploid Wheats, Chrom. Res., 1994, vol. 2, no. 1, pp. 59–64.

    Article  CAS  PubMed  Google Scholar 

  5. Salina, E.A., Leonova, I.N., Efremova, T.T., et al., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, no. 1, pp. 71–80.

    Article  CAS  PubMed  Google Scholar 

  6. Naranjo, T., Roca, A., Goicoecha, P.G., et al., Arm Homoeology of Wheat and Rye Chromosomes, Genome, 1987, vol. 29, no. 6, pp. 873–882.

    Google Scholar 

  7. Rodriguez, S., Perera, E., Maestra, B., et al., Chromosome Structure of Triticum timopheevii Relative to T. turgidum, Genome, 2000, vol. 43, no. 6, pp. 923–930.

    Article  CAS  PubMed  Google Scholar 

  8. Dobrovol’skaya, O.B., Surdii, P., Bernard, M., and Salina, E.A., Chromosome Synteny of the A Genome of Two Evolutionary Wheat Lines, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1368–1375.

    Article  Google Scholar 

  9. Feldman, M., Lupton, F.G.H., and Miller, T.E., Wheats, in Evolution of Crop Plants, London: Longman, 1995, pp. 184–192.

    Google Scholar 

  10. Huang, S., Sirikhachornkit, A., Su, X., et al., Genes Encoding Plastid Acetyl-CoA Carboxylase and 3-Phosphoglycerate Kinase of the Triticum/Aegilops Complex and the Evolutionary History of Polyploid Wheat, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 12, pp. 8133–8138.

    Article  CAS  PubMed  Google Scholar 

  11. Hutchinson, J., Miller, T.E., Jahier, J., et al., Comparison of the Chromosomes of Triticum timopheevi with Related Wheats Using the Techniques of C-Banding and in situ Hybridization, Theor. Appl. Genet., 1982, vol. 64, no. 1, pp. 31–40.

    Article  Google Scholar 

  12. Zurabishvili, T.G., Iordansky, A.B., and Badaev, N.S., Linear Differentiation of Cereal Chromosomes: II. Polyploid Wheats, Theor. Appl. Genet., 1978, vol. 51, no. 5, pp. 201–210.

    Article  Google Scholar 

  13. Badaeva, E.D., Shkutina, F.M., Bogdevich, I.N., et al., Comparative Study of Triticum aestivum and T. timopheevi Genomes Using C-Banding Technique, Plant Syst. Evol., 1986, vol. 154, nos. 3–4, pp. 183–194.

    Article  Google Scholar 

  14. Dvorák, J., The Origin of Wheat Chromosomes 4A and 4B and Their Genome Reallocation, Can. J. Genet. Cytol., 1983, vol. 25, no. 3, pp. 210–214.

    Google Scholar 

  15. Shang, X.M., Jackson, R.C., and Nguyen, H.T., Heterochromatin Diversity and Chromosome Morphology in Wheats Analyzed by HKG Banding Technique, Genome, 1988, vol. 30, no. 6, pp. 956–965.

    Google Scholar 

  16. Chen, P.D. and Gill, B.S., The Origin of Chromosome 4A, and Genomes B and G of Tetraploid Wheats, Proc. 6th Int. Wheat Genet. Symp., Sakamoto, S., Ed., Kyoto: Plant Germ-Plasm Inst. Kyoto Univ., 1984, pp. 39–48.

    Google Scholar 

  17. Gill, B.S. and Chen, P.D., Role of Cytoplasm-Specific Introgression in the Evolution of the Polyploid Wheats, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 19, pp. 6800–6804.

    Article  CAS  PubMed  Google Scholar 

  18. Maestra, B. and Naranjo, T., Structural Chromosome Differentiation between Triticum timopheevii and T. turgidum and T. aestivum, Theor. Appl. Genet., 1999, vol. 98, no. 5, pp. 744–750.

    Article  CAS  Google Scholar 

  19. Badaeva, E.D., Budashkina, E.B., Badaev, N.S., et al., General Features of Chromosome Substitutions in Triticum aestivum × T. timopheevii Hybrids, Theor. Appl. Genet., 1991, vol. 82, no. 2, pp. 227–232.

    Article  Google Scholar 

  20. Gill, K.S, Gill, B.S, and Snyder, E.B, Triticum araraticum Chromosome Substitutions in Common Wheat, Triticum aestivum cv. Wichita, Proc. 7th Int. Wheat Genet. Symp., Miller, T.E., Koebner, R.M.D., and Avon, V., Eds., Cambridge: Bath Press, 1988, pp. 87–92.

    Google Scholar 

  21. Morris, R. and Sears, E.R., The Cytogenetics of Wheat and Its Relatives, in Wheat and Wheat Improvement, Madison, 1967, pp. 19–87.

  22. Sears, E.R. and Okamato, M., Intergenomic Chromosome Relationship in Hexaploid Wheat, Proceedings of 10th International Congress of Genetics, Montreal: Univ. Toronto Press, 1958, pp. 258–259.

    Google Scholar 

  23. Badaeva, E.D. and Gill, B.S., Spontaneous Chromosome Substitutions in Hybrids of Triticum aestivum with T. araraticum Detected by C-Banding Technique, Wheat Inform. Serv., 1995, vol. 80, no. 1, pp. 26–31.

    Google Scholar 

  24. Rodrguez, S., Maestra, B., Perera, E., et al., Pairing Affinities of the B- and G-Genome Chromosomes of Polyploid Wheats with Those of Aegilops speltoides, Genome, 2000, vol. 43, no. 5, pp. 814–819.

    Article  Google Scholar 

  25. Badaeva, E.D., Prokof’eva, Z.D., Bilinskaya, E.N., et al., Cytogenetic Analysis of Hybrids Resistant to Yellow Rust and Powdery Mildew Obtained by Crossing Common Wheat (Triticum aestivum L., AABBDD) with Wheats of the Timopheevi Group (AtAtGG), Russ. J. Genet., 2000, vol. 36, no. 12, pp. 1401–1410.

    Article  CAS  Google Scholar 

  26. Badaeva, E.D., Badaev, N.S., Enno, T.M., et al., Chromosome Substitution in Progeny of Hybrids Triticum aestivum × Triticum timopheevii, Resistant to Brown Rust and Powdery Mildew, Russ. J. Genet., 1995, vol. 31, no. 1, pp. 89–92.

    Google Scholar 

  27. Shkutina, F.M., Kalinina, N.P., and Usova, T.K., The Role of a Soft Wheat Variety in Introgression of Alien Genetic Material in Its Genome and the Stabilization Rate of a Hybrid Form, Genetika (Moscow), 1988, vol. 24, no. 1, pp. 98–109.

    Google Scholar 

  28. Badaev, N.S, Badaeva, E.D, Dubovets, N.I, et al., Genotype-Environment Interaction and the Process of Karyotype Formation: I. Tetraploid Triticale, Proc. 2nd Int. Symp. Chromosome Engineering Plants, Kimber, G., Ed., 1990, pp. 270–273.

  29. Brown-Guedira, G., Badaeva, E.D., Gill, B.S., et al., Chromosome Substitutions of Triticum timopheevii in Common Wheat and Some Observations on the Evolution of Polyploid Wheat Species, Theor. Appl. Genet., 1996, vol. 93, no. 8, pp. 1291–1298.

    Article  Google Scholar 

  30. Allard, R.W. and Shands, R.G., Inheritance of Resistance to Stem Rust and Powdery Mildew in Cytologically Stable Spring Wheats Derived from Triticum timopheevii, Phytopathology, 1954, vol. 44, no. 2, pp. 266–274.

    Google Scholar 

  31. Dyck, P.L., Transfer of a Gene for Stem Rust Resistance from Triticum araraticum to Hexaploid Wheat, Genome, 1992, vol. 35, no. 5, pp. 788–792.

    Google Scholar 

  32. Friebe, B., Jiang, J., Raupp, W.J., et al., Characterization of Wheat-Alien Translocations Conferring Resistance to Diseases and Pests: Current Status, Euphytica, 1996, vol. 91, no. 1, pp. 59–87.

    Article  Google Scholar 

  33. McIntosh, R.A. and Gyarfas, J., Triticum timopheevii as a Source of Resistance to Wheat Stem Rust, Zeitschrift Pflanzenzucht., 1971, vol. 66, no. 3, pp. 240–248.

    Google Scholar 

  34. McIntosh, R.A, Hart, G.E, Devos, K.M, et al., Catalogue of Gene Symbols for Wheat, Proc. 9th Int. Wheat Genet. Symp., Slinkard, A.E., Ed., Saskatoon: Printcrafters, 1998, vol. 5, pp. 1–235.

    Google Scholar 

  35. Nyquist, N.E., Differential Fertilization in the Inheritance of Stem Rust Resistance in Hybrids Involving a Common Wheat Strain Derived from Triticum timopheevii, Genetics, 1962, vol. 47, no. 8, pp. 1109–1124.

    CAS  PubMed  Google Scholar 

  36. Leonova, I.N., Roder, M.S., Kalinina, N.P., Budashkina E.B., Genetic Analysis and Localization of Loci, Controlling Leaf Rust Resistance of Triticum aestivum × Triticum timorheevii Introgression Lines, Russ. J. Genet., 2008, vol. 44, no. 12, pp. 1431–1437.

    Article  CAS  Google Scholar 

  37. Järve, K., Peusha, H.O., Tsymbalova, J., et al., Chromosomal Location of a Triticum timopheevii-Derived Powdery Mildew Resistance Gene Transferred to Common Wheat, Genome, 2000, vol. 43, no. 2, pp. 377–381.

    Article  PubMed  Google Scholar 

  38. Brown-Guedira, G.L., Singh, S., and Fritz, A.K., Performance and Mapping of Leaf Rust Resistance Transferred to Wheat from Triticum timopheevii subsp. armeniacum, Phytopathology, 2003, vol. 93, no. 7, pp. 784–789.

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell, J., Lyerly, J., Cowger, C., et al., MlAG12: A Triticum timopheevii-Derived Powdery Mildew Resistance Gene in Common Wheat on Chromosome 7AL, Theor. Appl. Genet., 2009, vol. 119, no. 8, pp. 1489–1495.

    Article  CAS  PubMed  Google Scholar 

  40. Perugini, L., Murphy, J., Marshall, D., et al., Pm37, a New Broadly Effective Powdery Mildew Resistance Gene from Triticum timopheevii, Theor. Appl. Genet., 2008, vol. 116, no. 3, pp. 417–425.

    Article  CAS  PubMed  Google Scholar 

  41. Brown-Guedira, G.L., Gill, B.S., Cox, T.S., et al., Transfer of Disease Resistance Genes from Triticum araraticum to Common Wheat, Plant Breed., 1997, vol. 116, no. 2, pp. 105–112.

    Article  Google Scholar 

  42. Yamamori, M., An N-Band Marker for Gene Lr18 for Resistance to Leaf Rust in Wheat, Theor. Appl. Genet., 1994, vol. 89, no. 5, pp. 643–646.

    Article  CAS  Google Scholar 

  43. Tsujimoto, H., Gametocidal Genes in Wheat and Its Relatives: IV. Functional Relationships between Six Gametocidal Genes, Genome, 1995, vol. 38, no. 2, pp. 283–289.

    Article  CAS  PubMed  Google Scholar 

  44. Hohmann, U., Badaeva, K., Busch, W., et al., Molecular Cytogenetic Analysis of Agropyron Chromatin Specifying Resistance to Barley Yellow Dwarf Virus in Wheat, Genome, 1996, vol. 39, no. 2, pp. 336–347.

    Article  CAS  PubMed  Google Scholar 

  45. Zohary, D. and Feldman, M., Hybridization between Amphiploids and the Evolution of Polyploids in the Wheat (Aegilops-Triticum) Group, Evolution, 1962, vol. 16, no. 1, pp. 44–61.

    Article  Google Scholar 

  46. Devos, K.M., Dubkovsky, J., Dvorak, J., et al., Structural Evolution of Wheat Chromosomes 4A, 5A, and 7B and Its Impact on Recombination, Theor. Appl. Genet., 1995, vol. 91, no. 2, pp. 282–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Badaeva.

Additional information

Original Russian Text © E.D. Badaeva, E.B. Budashkina, E.N. Bilinskaya, V.A. Pukhalskiy, 2010, published in Genetika, 2010, Vol. 46, No. 7, pp. 869–886.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badaeva, E.D., Budashkina, E.B., Bilinskaya, E.N. et al. Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes. Russ J Genet 46, 769–785 (2010). https://doi.org/10.1134/S102279541007001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541007001X

Keywords

Navigation