Skip to main content
Log in

Agrobacterium-mediated transformation of flax with a mutant tubulin gene responsible for resistance to dinitroaniline herbicides

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens was used to transform fiber flax with the pBITUBA8 plasmid carrying the mutant α-tubulin gene imparting resistance to dinitroaniline herbicides and the nptII selective marker gene imparting resistance to kanamycin. The transformants were selected in parallel on media containing kanamycin and trifluralin (a dinitroaniline herbicide). The transgenic nature of the resultant regenerants resistant to dinitroaniline herbicides was confirmed by means of Southern blotting and polymerase chain reaction (PCR) analysis using specific probes for the ntpII gene and the gene of α-tubulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karpets’, I.P., Karpets’, A.I., and Dinnik, O.V., New Method of Fiber Detection in Flax Stems for Selection and Genetic Studies, in Genetika i selektsiya v Ukraini na mezhi tisyacholit’ (Genetics and Selection in Ukraine at the Turn of the Century), Kiiv: Logos, 2001, vol. 3, pp. 68–70.

    Google Scholar 

  2. Molin, W.T. and Khan, R.A., Mitotic Disrupter Herbicide: Recent Advances and Opportunities, Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, Roe, R.M., Ed., Burke: IOS Press, 1997, pp. 143–158.

    Google Scholar 

  3. Vaughn, K.C, Anticytoskeletal Herbicides, Plant Microtubules: Potential for Biotechnology, Nick, P., Ed., New York: Springer, 2000, pp. 193–205.

    Google Scholar 

  4. Vaughn, K.C., The Abnormal Cell Plates Formed after Microtubule Disrupter Herbicide Treatment Are Enriched in Callose, Pestic. Biochem. Physiol., 2006, vol. 84, pp. 63–71.

    Article  CAS  Google Scholar 

  5. Yemets, A.I. and Blyum, Ya.B., Plant Resistance to Herbicides with Antimicrotubular Activity: From Natural Mutants to Transgenic Plants, Fiziol. Rastenii, 1999, vol. 46, no. 6, pp. 899–907.

    Google Scholar 

  6. Morejohn, L.C. and Fosket, D.E., The Biochemistry of Compounds with Anti-Microtubule Activity in Plant Cells, Pharm. Ther., 1991, vol. 51, pp. 217–230.

    Article  CAS  Google Scholar 

  7. Fosket, D.E. and Morejohn, L.C., Structural and Functional Organization of Tubulin, Ann. Rev. Plant Physiol. Plant. Mol. Biol., 1992, vol. 43, pp. 201–240.

    CAS  Google Scholar 

  8. Bajer, A.S. and Molè-Bajer, J., Drugs with Colchicine-Like Effects That Specifically Disassemble Plant but not Animal Microtubules, Ann. N.Y. Acad. Sci., 1986, vol. 466, pp. 767–784.

    Article  PubMed  CAS  Google Scholar 

  9. Blume, Ya.B., Yemets, A.I., Nyporko, A.Yu., and Baird, W.V., Structural Modeling of Plant α-Tubulin Interaction with Dinitroanilines and Phosphoroamidates, Cell Biol. Int., 2003, vol. 27, pp. 171–174.

    Article  PubMed  CAS  Google Scholar 

  10. Anthony, R., Waldin, T., Ray, J., et al., Herbicide Resistance Caused by Spontaneous Mutation of the Cytoskeletal Protein Tubulin, Nature, 1998, vol. 393, pp. 260–263.

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto, E., Zeng, L., and Baird, W.V., Tubulin Missense Mutations Correlate with Antimicrotubule Drug Resistance in Eleusine indica, Plant Cell, 1998, vol. 10, pp. 297–308.

    Article  PubMed  CAS  Google Scholar 

  12. Radchuk, V.V., Sreenivasulu, N., Blume, Y., and Weschke, W., Distinct Tubulin Genes Are Differentially Expressed during Barley Grain Development, Physiol. Plant., 2007, vol. 131, pp. 571–580.

    Article  PubMed  CAS  Google Scholar 

  13. Toepfer, R., Maas, C., Horicke-Grandpierre, C., et al., Expression Vectors for High-Level Gene Expression in Dicotyledonous and Monocotyledonous Plants, Meth. Enzymol., 1993, vol. 217, pp. 67–78.

    Google Scholar 

  14. Höfgen, R. and Willmitzer, L., Biochemical and Genetic Analysis of Different Patatin Isoforms Expressed in Various Organs of Potato (Solanum tuberosum), Plant Sci., 1990, vol. 66, pp. 221–230.

    Article  Google Scholar 

  15. Hood, E.E., Gelvin, S.B., Melchers, S., and Hoekema, A., New Agrobacterium Helper Plasmids for Gene Transfer to Plants (EHA105), Trans. Res., 1993, vol. 2, pp. 208–218.

    Article  CAS  Google Scholar 

  16. Holsters, M., de Waele, D., Depicker, A., et al., Transfection and Transformation of Agrobacterium tumefaciens, Mol. Gen. Genet., 1978, vol. 163, pp. 181–187.

    Article  PubMed  CAS  Google Scholar 

  17. Yemets, A.I., Kundel’chuk, O.P., Smertenko, A.P., et al., Transfer of Amiprophosmethyl-Resistance from a Nicotiana plumbaginifolia Mutant by Somatic Hybridization, Theor. Appl. Genet., 2000, vol. 100, pp. 847–857.

    Article  CAS  Google Scholar 

  18. Yemets, A.I., Klimkina, L.A., Tarassenko, L.V., and Blume, Ya.B., Efficient Callus Formation and Plant Regeneration from Dinitroaniline-Resistant and Susceptible Biotypes of Eleusine indica (L.), Plant Cell Rep., 2003, vol. 21, pp. 503–510.

    PubMed  CAS  Google Scholar 

  19. Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbour Lab., 2001.

    Google Scholar 

  20. Baer, O.A., Baer, G.Ya., Yemets, A.I., and Blume, Ya.B., In vitro Culture and Regeneration Ability of Different Flax Varieties of Ukrainian Selections with Different Wind Resistance, Fiziol. Biokhim. Kul’t. Rast., 2004, vol. 36, no. 1, pp. 48–54.

    Google Scholar 

  21. Draper, J., Scott, P., Armitage, F., and Wolden, R., Plant Genetic Transformation and Gene Expression, Oxford: Academic, 1988.

    Google Scholar 

  22. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  23. Radchuk, V.V., Kloke, E., Radchuk, R.I., et al., Production of Transgenic Rapeseed Plants (Brassisa napus L.) by Transformation with Agrobacterium tumefaciens, Russ. J. Genet., 2000, vol. 36, no. 7, pp. 932–941.

    CAS  Google Scholar 

  24. Radchuk, V.V., Sreenivasulu, N., Radchuk, R.I., et al., The Methylation Cycle and Its Possible Function in Barley Endosperm Development, Plant. Mol. Biol., 2005, vol. 59, pp. 289–307.

    Article  PubMed  CAS  Google Scholar 

  25. Polyakov, A.V., Chirkizova, O.F., Kalyaeva, M.A., et al., Transformation of Flax Plants, Fiziol. Rastenii, 1998, vol. 45, no. 6, pp. 882–887.

    Google Scholar 

  26. Dong, J.Z. and McHughen, A., Patterns of Transformation Intensity on Flax Hypocotyls Inoculated with Agrobacterium tumefaciens, Plant Cell Rep., 1991, vol. 10, pp. 555–560.

    Article  CAS  Google Scholar 

  27. Erdelska, O., Kobeticova, D., and Pretova, A., The in vitro Development of Excised Flax Embryos, Biologia, 1973, vol. 28, pp. 235–239.

    Google Scholar 

  28. Gamborg, O.L. and Shyluk, J.P., Tissue Culture, Protoplasts and Morphogenesis in Flax, Bot. Gaz., 1976, vol. 137, pp. 151–158.

    Article  Google Scholar 

  29. Millam, S., Obert, B., and Pret’ova, A., Plant Cell and Biotechnology Studies in Linum usitatissimum—a Review, Plant Cell Tissue Org. Cult., 2005, vol. 82, pp. 93–103.

    Article  CAS  Google Scholar 

  30. Lamblin, F., Aime, A., Hano, C., et al., The Use of the Phosphomannose Isomerase Gene as Alternative Selectable Marker for Agrobacterium-Mediated Transformation of Flax (Linum usitatissimum), Plant Cell Rep., 2007, vol. 26, pp. 765–772.

    Article  PubMed  CAS  Google Scholar 

  31. Jordan, M.C. and McHughen, A., Glyphosate Tolerant Flax Plants from Agrobacterium Mediated Gene Transfer, Plant Cell Rep., 1988, vol. 7, pp. 281–284.

    Article  CAS  Google Scholar 

  32. Hano, C., Martin, I., Fliniaux, O., et al., Pinoresinol-Lariciresinol Reductase Gene Expression and Secoisolariciresinol Diglucoside Accumulation in Developing Flax (Linum usitatissimum) Seeds, Planta, 2006, vol. 224, pp. 1291–1301.

    Article  PubMed  CAS  Google Scholar 

  33. McHughen, A., Agrobacterium Mediated Transfer of Chlorsulfuron Resistance to Commercial Flax Cultivars, Plant Cell Rep., 1989, vol. 8, pp. 445–449.

    Article  CAS  Google Scholar 

  34. McHughen, A., Jordan, M., and Feist, G., A Preculture Period Prior to Agrobacterium tumefaciens Inoculation Increases Production of Transgenic Plants, J. Plant. Physiol., 1989, vol. 135, pp. 245–248.

    Google Scholar 

  35. Dong, J.Z. and McHughen, A., Transgenic Flax Plants from Agrobacterium tumefaciens Transformation-Incidence of Chimeric Regenerants and Inheritance of Transgenic Plants, Plant Sci., 1993, vol. 91, pp. 139–148.

    Article  CAS  Google Scholar 

  36. Ling, H.Q. and Binding, H., Transformation in Protoplast Cultures of Linum usitatissimum and L. suffruticosum Mediated with PEG and with Agrobacterium tumefaciens, J. Plant Physiol., 1997, vol. 151, pp. 479–488.

    CAS  Google Scholar 

  37. Dong, J.Z. and McHughen, A., An Improved Procedure for Production of Transgenic Flax Plants Using Agrobacterium tumefaciens, Plant Sci., 1993, vol. 88, pp. 61–71.

    Article  CAS  Google Scholar 

  38. Yemets, A.I., Strashnyuk, N.M., and Blume, Ya.B., Plant Mutants and Somatic Hybrids with Resistance to Trifluralin, Cell Biol. Int., 1997, vol. 21, pp. 912–914.

    Google Scholar 

  39. Basiran, N., Armitage, P., Scott, R.J., and Draper, J., Genetic Transformation of Flax (Linum usitatissimum) by Agrobacterium tumefaciens Regeneration of Transformed Shoots via a Callus Phase, Plant Cell Rep., 1987, vol. 6, pp. 396–399.

    Article  CAS  Google Scholar 

  40. Yemets, A.I., Kundelchuk, O.P., Smertenko, A.P., et al., Somatic Hybrids of Higher Plants Obtained from Amiprophosmethyl-Resistant Mutant of Nicotiana plumbaginifolia L., Russ. J. Genet., 1996, p. 32, no. 8, pp. 1104–1111.

  41. Yemets, A.I., Blyum, Ya.B., Smertenko, A.P., et al., Obtaining of γ-Hybrids of Higher Plants with Mutant Beta-Tubulin, Dokl. Akad. Nauk, 1997, vol. 353, no. 4, pp. 557–561.

    Google Scholar 

  42. Blume, Ya.B, Kundelchuk, O.P, Solodushko, V.G, et al., Asymmetric Somatic Hybrids of Higher Plants Resistant to Trifluralin, in Proc. Int. Symp. Weed Crop Resist. to Herbicides, De, R., et al., Eds., Cordoba: Univ. Cordoba, 1996, pp. 182–185.

    Google Scholar 

  43. Luduena, R.F., Multiple Forms of Tubulin: Different Gene Products and Covalent Modifications, Inter. Rev. Cyt., 1998, vol. 178, pp. 207–276.

    Article  CAS  Google Scholar 

  44. De Buck, S. and Depicker, A., Gene Expression and Level of Expression, Handbook of Plant Biotechnology, Christou, P. and Klee, H., Eds., Chichester: Wiley, 2004, pp. 331–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yemets.

Additional information

Original Russian Text © A.I. Yemets, O.A. Bayer, V.V. Radchuk, Ya.B. Blume, 2009, published in Genetika, 2009, Vol. 45, No. 10, pp. 1377–1385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yemets, A.I., Bayer, O.A., Radchuk, V.V. et al. Agrobacterium-mediated transformation of flax with a mutant tubulin gene responsible for resistance to dinitroaniline herbicides. Russ J Genet 45, 1215–1222 (2009). https://doi.org/10.1134/S1022795409100093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409100093

Keywords

Navigation