Skip to main content
Log in

Paclobutrazol Can Enhance the Thermal-Tolerant on Herbaceous Peony (Paeonia lactiflora)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

As an excellent ornamental flower, herbaceous peony (Paeonia lactiflora Pall.) was introduced to south region of the Yangtze River with continuous high temperature in summer. However, herbaceous peony is adaptable to cool and dry environment but not adaptable to high temperature in summer. Therefore, how to alleviate the high temperature stress injury to herbaceous peony is an urgent problem to be solved. In this study, the effects of exogenous paclobutrazol (PBZ) on alleviate the high temperature stress injure to herbaceous peony were examined under high temperature stress. The results showed that exogenous PBZ treatment on herbaceous peony under high temperature can reduce the electrolyte leakage rate and the degree of membrane lipid peroxidation, restrain the production of superoxide anion (\({\text{O}}_{2}^{ - }\)) and the hydrogen peroxide (H2O2), and increase the activities of catalase (CAT) and superoxide dismutase (SOD). Additionally, comprised with control, exogenous PBZ could improve the photosynthesis, reduce the damage degree of cell structure. Moreover, PBZ induced high temperature-tolerant related genes expression to different degrees. These results indicated that PBZ decreased the deleterious effect of high temperature stress on herbaceous peony growth by reducing membrane lipid peroxidation, activating photosynthesis, and protecting cell structures. These findings indicate the crucial role of PBZ in high temperature stress mitigation and its potential application for managing high temperatures in herbaceous peony cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Goraya, G.K., Kaur, B., Asthir, B., Bala, S., Kaur, G., and Farooq, M., Rapid injuries of high temperature in plants, J. Plant Biol., 2017, vol. 60, p. 298.

    Article  CAS  Google Scholar 

  2. Kanchan, J. and Bhatia, V.S., Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean, Physiol. Mol. Biol. Plants, 2018, vol. 24, p. 37.

    Article  Google Scholar 

  3. Lobell, D.B., Schlenker, W., and Costa-Roberts, J., Climate trends and global crop production since 1980, Science, 2011, vol. 333, p. 616.

    Article  CAS  PubMed  Google Scholar 

  4. Nissim, Y., Shloberg, M., Biton, I., Many, Y., Doron-Faigenboim, A., Zemach, H., Hovav, R., Kerem, Z., Avidan, B., and Ben-Ari, G., High temperature environment reduces olive oil yield and quality, PLoS One, 2020, vol. 15, p. e0231956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lizaso, J.I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliverira, J.A., Lorite, I.J., Sánchez, D., García, E., and Rodríguez, A., Impact of high temperatures in maize: phenology and yield components, Field Crop Res., 2018, vol. 216, p. 129.

    Article  Google Scholar 

  6. Zhu, T.T., De Lima, C.F.F., and De Smet, I., The heat is on: how crop growth, development, and yield respond to high temperature, J. Exp. Bot., 2021, vol. 2021, p. erab308.

  7. Barros, J.R.A., Guimarães, M.J.M., Moura e Silva, R., Rêgo, M.T.C., de Melo, N.F., de Melo Chaves, A.R., and Angelotti, F., Selection of cowpea cultivars for high temperature tolerance: physiological, biochemical and yield aspects, Physiol. Mol. Biol. Plants, 2021, vol. 27, p. 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul, S., Farooq, M., Bhattacharya, S.S., and Gogoi, N., Management strategies for sustainable yield of potato crop under high temperature, Arch. Agron. Soil Sci., 2017, vol. 63, p. 276.

    Article  CAS  Google Scholar 

  9. Zhao, D.Q., Li, T.T., Hao, Z.J., Cheng, M.L., and Tao, J., Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure, Cell Stress Chaperones, 2019, vol. 24, p. 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z.Z., Lan, M.F., Han, X.Y., Wu, J.H., and Wang-Pruski, G., Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature, J. Plant Growth Regul., 2020, vol. 39, p. 133.

    Article  CAS  Google Scholar 

  11. An, Y., Zhou, P., and Liang, J.F., Effects of exogenous application of abscisic acid on membrane stability, osmotic adjustment, photosynthesis and hormonal status of two lucerne (Medicago sativa L.) genotypes under high temperature stress and drought stress, Crop Pasture Sci., 2014, vol. 65, p. 274.

    Article  CAS  Google Scholar 

  12. Baninasab, B. and Ghobadi, C., Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings, J. Plant Growth Regul., 2011, vol. 30, p. 213.

    Article  CAS  Google Scholar 

  13. Soumya, P.R., Kumar, P., and Pal, M., Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant, Indian J. Plant Physiol., 2017, vol. 22, p. 267.

    Article  CAS  Google Scholar 

  14. Babarashi, E., Rokhzad,i A., Pasari, B., and Mohammadi, K., Ameliorating effects of exogenous paclobutrazol and putrescine on mung bean (Vigna radiata (L.) Wilczek) under water deficit stress, Plant Soil Environ., 2021, vol. 67, p. 40.

    Article  CAS  Google Scholar 

  15. Wu, H., Chen, H.Z., Zhang, Y.K., Zhang, Y.P., Zhu, D.F., and Xiang, J., Effects of 1-aminocyclopropane-1-carboxylate and paclobutrazol on the endogenous hormones of two contrasting rice varieties under submergence stress, Plant Growth Regul., 2019, vol. 87, p. 109.

    Article  CAS  Google Scholar 

  16. Forghani, A.H., Almodares, A., and Ehsanpour, A.A., The role of gibberellic acid and paclobutrazol on oxidative stress responses induced by in vitro salt stress in sweet sorghum. Russ. J. Plant Physiol., 2020, vol. 67, p. 555.

    Article  CAS  Google Scholar 

  17. Moradi, S., Baninasab, B., Gholami, M., and Ghobadi, C., Paclobutrazol application enhances antioxidant enzyme activities in pomegranate plants affected by cold stress, J. Hortic. Sci. Biotechnol., 2017, vol. 92, p. 65.

    Article  CAS  Google Scholar 

  18. Kamenetsky, R. and Dole, J., Herbaceous peony (Paeonia): genetics, physiology and cut flower production, Floricult. Ornamental Biotechnol., 2012, vol. 6, p. 62.

    Google Scholar 

  19. Zhao, D.Q., Han, C.X., and Tao, J., Heat tolerance identification of different herbaceous peony (Paeonia lactiflora Pall.) cultivars, J. Yangzhou Univ., Agric. Life Sci., 2015, vol. 36, p. 105.

    Google Scholar 

  20. Zhao, D.Q., Han, C.X., Zhou, C.H., and Tao, J., Shade ameliorates high temperature-induced inhibition of growth in herbaceous peony (Paeonia lactiflora), Int. J. Agric. Biol., 2015, vol. 17, p. 911.

    Article  CAS  Google Scholar 

  21. Hao, Z.J., Wei, M.R., Gong, S.J., Zhao, D.Q., and Tao, J., Transcriptome and digital gene expression analysis of herbaceous peony (Paeonia lactiflora Pall.) to screen thermo-tolerant related differently expressed genes, Genes Genomics, 2016, vol. 38, p. 1201.

    Article  CAS  Google Scholar 

  22. Zhao, D.Q., Xia, X., Su, J.H., Wei, M.R., Wu, Y.Q., and Tao, J., Overexpression of herbaceous peony HSP70 confers high temperature tolerance, BMC Genomics, 2019, vol. 20, p. 70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fang, Z.W., Wang, X.X., Zhang, X.Y., Zhao, D.Q., and Tao, J., Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress, Plant Signaling Behav., 2020, vol. 15, art. ID 1774714.

    Article  Google Scholar 

  24. Zhao, D.Q., Tao, J., Han, C.X., and Ge, J.T. Actin as an alternative internal control gene for gene expression analysis in herbaceous peony (Paeonia lactiflora Pall.), Afr. J. Agric. Res., 2012, vol. 7, p. 2153.

    Google Scholar 

  25. Schmittgen, T.D. and Livak, K.J., Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 2008, vol. 3, p. 1101.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J.W. and Lee, B.H., Physiological and molecular responses of maize to high temperature stress during summer in the southern region of Korea, J. Korean Soc. Grassland Sci., 2018, vol. 38, p. 170.

    Article  Google Scholar 

  27. Liao, L., Zou, S.F., Yu, G.J., Sun, X.X., and Lin, W.X., The effects of different phosphorus, potassium and paclobutrazol application rates on the heat-resistance of Festuca arundinacea, Acta Pratacult. Sci., 2016, vol. 23, p. 119.

    Google Scholar 

  28. Hassan, N., Ebeed, H., and Aljaarany, A., Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure, Physiol. Mol. Biol. Plants, 2020, vol. 26, p. 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405.

    Article  CAS  PubMed  Google Scholar 

  30. Anjum, S.A., Farooq, M., Xie, X.Y., Liu, X.J., and Ijaz, M.F., Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought, Sci. Hortic. (Amsterdam), 2012, vol. 140, p. 66.

    Article  CAS  Google Scholar 

  31. Zhanassova, K., Kuumanbayeava, A., Gadilgereyeva, B., Yermukhambetova, R., Iksat, N., Amanbayeva, U., Bekturova, A., Tleukulova, Z., Omarov, R., and Masalimov, Z., ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley, Acta Physiol. Plant., 2021, vol. 43, p. 114.

    Article  CAS  Google Scholar 

  32. Tirani, M.M. and Haghjou, M.M., Reactive oxygen species (ROS), total antioxidant capacity (AOC) and malondialdehyde (MDA) make a triangle in evaluation of zinc stress extension, J. Anim. Plant Sci., 2019, vol. 29, p. 1110.

    Google Scholar 

  33. Mathur, S., Agrawal, D., and Jajoo, A., Photosynthesis: response to high temperature stress, J. Photochem. Photobiol., B, 2014, vol. 137, p. 116.

    Article  CAS  Google Scholar 

  34. Wu, H.Y., Shou, S.Y., Zhu, Z.J., and Yang, X., Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.), Acta Hortic. Sin., 2001, vol. 28, p. 517.

    Google Scholar 

  35. Georgieva, K. and Lichtenthaler, H.K., Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studies by means of chlorophyll fluorescence, J. Plant Physiol., 1999, vol. 155, p. 416.

    Article  CAS  Google Scholar 

  36. Baker, N.R., Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 2008, vol. 59, p. 89.

    Article  CAS  PubMed  Google Scholar 

  37. Klughammer, C. and Schreilber, U., Complementary to PS I quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method, PAM Appl. Notes, 2008, vol. 1, p. 27.

    Google Scholar 

  38. Sun, X.Z., Zheng, C.S., and Wang, X.F., Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of cut flower chrysanthemum (Dendranthema grandiflora ‘Jinba’), Chin. J. Appl. Ecol., 2008, vol. 10, p. 2149.

    Google Scholar 

  39. Yer Çelik, E.N., Baloğlu, M.C., and Ayan, S., Gene expression profiles of Hsp family members in different poplar taxa under cadmium stress, Turk. J. Agric. For., 2021, vol. 45, p. 102.

    Google Scholar 

  40. Wang, W., Vinocur, B., Shoseyov, O., and Altman, A., Role of plant heat shock proteins and molecular chaperons in the abiotic stress response, Trends Plant Sci., 2004, vol. 9, p. 1360.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for their constructive and valuable comments. Thanks to the editors for their assistance in refining this article.

Funding

This work was supported by the Natural Science Foundation of China, project no. 32071813; the Jiangsu Agricultural Science and Technology Innovation Foundation of China, project no. CX(19)3124; the Modern Agriculture Industrial Technology System (Flower) in Jiangsu Province, project no. JATS[2020]436; and the Young Talent Support Project of Jiangsu Provincial Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

D.Q. Zhao and J. Tao conceived and designed the study. J.S. Meng and Z.J. Hao collected samples and performed the experiments. J.S. Meng, and M. Li drafted and revised the manuscript.

Corresponding author

Correspondence to J. Tao.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviation: PBZ—paclobutrazol; REC—relative electrical conductivity; MDA—malondialdehyde; Pn—net photosynthesis rate; Tr—transpiration rate; Gs—stomatal conduction; Ci—intercellular CO2 concentration; WUE—water utilization efficiency; Fv/Fm—the maximum PSII photochemical efficiency; Y(II)—the actual photosynthetic efficiency of photosystem II; Y(NO)—the quantum yield of non-regulated non-photochemical energy loss; Y(NPQ)—the quantum yield of regulated non-photochemical energy loss; HSP—heat stress protein.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J.S., Li, M., Hao, Z.J. et al. Paclobutrazol Can Enhance the Thermal-Tolerant on Herbaceous Peony (Paeonia lactiflora). Russ J Plant Physiol 69, 57 (2022). https://doi.org/10.1134/S1021443722030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030104

Keywords:

Navigation