Skip to main content
Log in

ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The influence of drought stress on barley (Hordeum vulgare) has been investigated. The experiments were conducted with seedlings of barley—by the application of combined drought and temperature stresses. Here we showed that combination of drought and high temperature inflicted more severe damage to plants than the drought and low temperature stress. The temperature stress triggered more drastic changes in plant morphology/physiology and biochemistry than the drought stress. Interestingly, plants exposed to high temperature exhibited significant reduction of shoot and root aldehyde oxidase (AO) activity. Moreover, increased temperature resulted in lower levels of reactive oxygen species (ROS), while drought stress had an opposite effect on ROS accumulation and AO activity. This is the first demonstration of inhibition of plant AO and ROS in response to heat stress. The combined heat and drought stresses resulted in increased activity of catalase (CAT) and superoxide dismutase (SOD) in roots but not in shoots. Our findings indicate that heat and drought stresses may induce activation of different antioxidant enzymatic defense mechanisms and heat stress significantly affects enzymes responsible for the ROS accumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AO:

Aldehyde oxidase

ROS:

Reactive oxygen species

CAT:

Catalase

SOD:

Superoxide dismutase

POD:

Peroxidase

HSP:

Heat shock proteins

ALDH:

Aldehyde dehydrogenases

H2O2 :

Hydrogen peroxide

NBT:

Nitroblue tetrazolium

RWC:

Relative water content

MDA:

Malondialdehyde

References

  • Abid M, Ali S, Qi LK (2018) Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 8(1):4615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE 8(10):e77869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum S, Farooq M, X-yu X, X-jian L, Ijaz MF (2012) Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci Hortic 140:66–73

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashoub A, Baeumlisberger M, Neupert ME, Karas M, Bruggemann W (2015) Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol Biol 87(4–5):459–471

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V, Turner N, Berger J (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41(11):1148–1167

    Article  CAS  PubMed  Google Scholar 

  • Babenko ON, Brychkova G, Sagi M, Alikulov ZA (2015) Molybdenum application enhances adaptation of crested wheatgrass to salinity stress. Acta Physiol Plant 37(14):1–13

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Batyrshina Z, Yergaliyev TM, Nurbekova Z, Moldakimova NA, Masalimov ZK, Sagi M, Omarov RT (2018) Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity. J Plant Physiol 228:189–196

  • Berwal MK, Ram C (2018) Superoxide dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. In: De Oliveira A (ed) Abiotic and Biotic Stress in Plants. IntechOpen, London, UK

  • Bittner F, Mendel RR (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763(7):621–635

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Gore M, Andrade-Sanchez P, French A, Hunsaker D (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Van Montagy M, Inze D (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  CAS  PubMed  Google Scholar 

  • Davies K (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66(10):2827–2837

    Article  PubMed  CAS  Google Scholar 

  • Devi R, Kaur N, Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian J Biochem Biophys 49(4):257–265

    CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48(12):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa A, Nazir U, Anjum SA (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Gapinska M, Sklodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

  • Gooding MJ, Ellis RH, Shewry PR, Schofield JD (2003) Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J Cereal Sci 37(3):295–309

    Article  Google Scholar 

  • Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243(3):767–781

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Gao S, Zhao F, Li F (2004) Effects of cold acclimation on several enzyme activities in Euonymus radicans ‘emorald and gold’ and its relation to semi-lethal temperature. Forestry Stud China 6:10–17

    Article  CAS  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15(3):176–184

    Article  CAS  PubMed  Google Scholar 

  • Hussain HA, Men S, Hussain S (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9(1):3890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Ragupathi G, Manivannan P, Jallali I (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Janmohammadi M, Enayati V, Sabaghnia N (2012) Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. Icel Agric Sci 25:3–11

    Google Scholar 

  • Koshiba T, Saito E, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol 110(3):781–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159(1):75–85

  • Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 61:4197–4220

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Negi NP, Shrivastava DC, Sarin NB (2015) Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep 34(7):1109–1126

  • Omarov RT, Akaba S, Lips SH (1999) Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J Exp Bot 50:63–69

    Article  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614

    Article  CAS  PubMed  Google Scholar 

  • Ristic Z, Bukovnik U, Prasad PVV (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci 47:2067–2073

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130(3):1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Omarov RT, Lips SH (1998) The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci 135:125–135

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8(1):16496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz SS, Leon-Kloosterzeil KM, Koornneef M, Zeevaart AD (1997) Biochemical characterization of the ab2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekimoto H, Seo M, Dohmae N, Takio K, Kamiya Y, Koshiba T (1997) Cloning and molecular characterization of plant aldehyde oxidase. J Biol Chem 272:15280–15285

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 8:23(4):481–488

  • Sharma I, Ahmad P (2014) Catalase: a versatile antioxidant in plants. In: Oxidative Damage to Plants: Antioxidant Networks and Signalling, pp 131–148

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

  • Srivastava S (2017) Aldehyde oxidase 4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification. Plant Physiol 173(4):1977–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Sharma S, Taneja M (2017) Superoxide dismutases in bread wheat (Triticum aestivum L.): comprehensive characterization and expression analysis during development and biotic and abiotic stresses. Agric Gene 6:1–13

  • Wang W, Zhang X, Deng F, Yuan R, Shen F (2017) Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum. BMC Genom 18(1):376

    Article  CAS  Google Scholar 

  • Wu J (2016) Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.). Plant Growth Regulat 79:55–64

  • Yergaliyev TM, Nurbekova Z, Mukiyanova G (2016) The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiol Biochem 109:36–44

    Article  CAS  PubMed  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42(6):862–876

    Article  CAS  PubMed  Google Scholar 

  • Zarepour M, Simon K, Wilch M (2012) Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Mol Biol 80(6):659–671

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under Grant nos. BR05236574, AP05135485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assylay Kurmanbayeva.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests regarding the publication of this article.

Additional information

Communicated by G. Bartosz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhanassova, K., Kurmanbayeva, A., Gadilgereyeva, B. et al. ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiol Plant 43, 114 (2021). https://doi.org/10.1007/s11738-021-03281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03281-7

Keywords

Navigation