Skip to main content
Log in

Lateral Preferences as Possible Phenotypic Predictors of the Reserves of the Cardiovascular System and the Features of Sensorimotor Integration in Climbers

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The lateral preferences of the hands, the reserves of the cardiovascular system and the features of sensorimotor integration in mountain climbers as possible predictors of adaptation to extreme factors of the external environment have been investigated. The subjects were 15 climbers of high class (men aged 25.5–62.8 years). We used the following methods: reflexometric technique ReBFB (complex sensorimotor reaction in the model of go/no-go, computer simulation according to Chernikov); the assessment of lateral preferences using the standard samples; the orthostatic test (with the recording of the heart rate and evaluation of adaptive reserves based on the indices of mathematical analysis of the cardiac rhythm in the transition period according to a technique by Riftin). Sensorimotor integration was performed under normal conditions and under normobaric hypoxia. All indicators were correlated with the age and proficiency of the climbers. We observed no statistically significant correlations between age and the reserves of the cardiovascular system in the group of climbers. Reflexometry in normoxic conditions showed an improvement in the orientation of subjects in the sensory flow as compared with the initial level. The sensorimotor integration (as a response of sensorimotor responses) was more stable during hypoxia as compared with the same indices in normoxia. Noticeable correlation was observed between the results of the humeral test and the reserves of the cardiovascular system defined by orthostatic hypotension: the reserves were higher in the subjects with a higher level of left-hand preference. The regulation of the autonomic nervous system is correlated with left-handedness, which results in more effective adaptation to the high altitude in left-handers. The parameter of handedness can be used as a phenotypic predictor of the level of the cardiovascular system reserves in climbers. It is suggested that the factor of hypoxia with small exposure has a stimulating effect on sensorimotor integration in climbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krivoshchekov, S.G., Belisheva, N.K., Nikolaeva, E.I., et al., The concept of allostasis and adaptation of man in the north, Ekol. Chel., 2016, no. 7, p. 17.

    Google Scholar 

  2. Medvedev, V.I., Ustoichivost’ fiziologicheskikh i psikhologicheskikh funktsii cheloveka pri deistvii ekstremal’nykh faktorov (Stability of Physiological and Psychological Human Functions in Extreme Conditions), Leningrad: Nauka, 1982.

    Google Scholar 

  3. Vasil’eva, V.V. and Syroezhkin, A.S., Analysis of factors of successful achievement of 7000-m height by a climber, Ekstremal’naya Deyat. Chel., 2012, no. 3 (25), p. 23.

    Google Scholar 

  4. Nikolaeva, E.I., Elnikova, O.E., and Vergunov, E.G., The relationship between the quality of life, hardiness and parameters of autonomic balance, in Behavior Change: Making an Impact on Health and Health Services, Aberdeen: Univ. of Aberdeen, 2016, p. 736.

    Google Scholar 

  5. Krivoschekov, S.G., Balioz, N.V., Nekipelova, N.V., and Kapilevich, L.V., Age, gender, and individuallytypological features of reaction to sharp hypoxic influence, Hum. Physiol., 2014, vol. 40, no. 6, p. 613.

    Article  CAS  Google Scholar 

  6. Leutin, V.P. and Nikolaeva, E.I., Psikhofiziologicheskie mekhanizmy adaptatsii i funktsional’naya asimmetriya mozga (Psychophysiological Adaptation and Functional Asymmetry of the Brain), Novosibirsk: Nauka, 1988.

    Google Scholar 

  7. Dempsey, J.A. and Morgan, B.J., Humans in hypoxia: a conspiracy of maladaptation? Physiology, 2015, vol. 30, p. 304. doi 10.1152/physiol.00007.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wilson, M.H., Newman, S., and Imray, C.H., The cerebral effects of ascent to high altitudes, Lancet Neurol., 2009, vol. 8, p. 175. doi 10.1016/S1474-4422(09)70014-6

    Article  PubMed  CAS  Google Scholar 

  9. Hu, S.L., Xiong, W., Dai, Z.Q., et al., Cognitive changes during prolonged stay at high altitude and its correlation with C-reactive protein, PLoS One, 2016, vol. 11, no. 1, p. e0146290. doi 10.1371/journal. pone.0146290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cronbach, L.J., The two disciplines of scientific psychology, Am. Psychol., 1957, no. 12, p. 671.

    Article  Google Scholar 

  11. Goodwin, J.C. and Goodwin, K.A., Research in Psychology: Methods and Design, New York: Wiley, 2016.

    Google Scholar 

  12. Jensen, A.R., Clocking the Mind: Mental Chronometry and Individual Differences, Amsterdam: Elsevier, 2006.

    Google Scholar 

  13. Kirsch, W. and Hoffmann, J., Stimulus-dependent modulation of perceptual and motor learning in a serial reaction time task, Adv. Cognit. Psychol., 2012, vol. 8(2), p. 155. doi 10.2478/v10053-008-0112-2

    Article  Google Scholar 

  14. Levy-Tzedek, S., Hanassy, S., Abboud, S., et al., Fast, accurate reaching movements with a visual-to-auditory sensory substitution device, Restor. Neurol. Neurosci., 2012, vol. 30, no. 4, p. 313. doi 10.3233/RNN-2012-110219

    PubMed  CAS  Google Scholar 

  15. Broggin, E., Savazzi, S., and Marzi, C.A., Similar effects of visual perception and imagery on simple reaction time, Q. J. Exp. Psychol. (Hove), 2012, vol. 65, no. 1, p. 151. doi 10.1080/17470218.2011.594896

    Article  Google Scholar 

  16. Eysenck, H., Intelligence: a new look, Vopr. Psikhol., 1995, no. 1, p. 111.

    Google Scholar 

  17. Ponomarev, M.F., Motor reactions related to time perception, Vopr. Psikhol., 1960, no. 3, p. 79.

    CAS  Google Scholar 

  18. Boiko, E.I., Vremya reaktsii cheloveka (Time of Reaction of a Man), Moscow: Meditsina, 1964.

    Google Scholar 

  19. Mernshtein, N.A., Ocherki po fiziologii dvizhenii i fiziologii aktivatsii (Essays on Physiology of Movement and Physiology of Activation), Moscow: Meditsina, 1966.

    Google Scholar 

  20. Ivanchenko, S.N. and Malykh, S.B., The variability of the rate characteristics of sensorimotor reactions in various experimental conditions, Vopr. Psikhol., 1994, no. 6, p. 80.

    Google Scholar 

  21. Chuprikova, N.I., Reaction time and intelligence: why they are connected? Vopr. Psikhol., 1995, no. 4, p. 65.

    Google Scholar 

  22. Danilova, N.N. and Astaf’ev, S.V., Human attention as a specific relationship of EEG rhythms and wave modulators of heart rhythm, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2000, vol. 50, no. 5, p. 791.

    CAS  Google Scholar 

  23. Kiselev, S.Yu., Lupandin, V.I., and Tkachuk, I.E., Relationship of intelligence and indicators of sensorimotor test in children of preschool age, Vopr. Psikhol., 2000, no. 4, p. 38.

    Google Scholar 

  24. Il’in, E.P., Psikhomotornaya organizatsiya cheloveka (Psychomotor Organization of a Man), St. Petersburg: Piter, 2003.

    Google Scholar 

  25. Batuev, A.S., Fiziologiya vysshei nervnoi deyatel’nosti i sensornykh sistem (Physiology of Higher Nervous Activity and Sensory Systems), St. Petersburg: Piter, 2006.

    Google Scholar 

  26. Marchenko, E.N., Nikishina, N.A., and Savchenko, A.A., Reactivity of sensory zones as natural prerequisites for cognitive abilities, Uch. Zap. Ross. Gos. Sots. Univ., 2011, no. 6, p. 294.

    Google Scholar 

  27. Aleksandrov, Yu.I., Psikhofiziologiya (Psychophysiology), St. Petersburg: Piter, 2014.

    Google Scholar 

  28. Rusalov, V.M., Biologicheskie osnovy individual’nopsikhologicheskikh razlichii (Biological Basis of Individual- Psychological Differences), Moscow: Nauka, 1979.

    Google Scholar 

  29. Shutov, S.V. and Murav’ev, I.V., Sensomotor reactions as a characteristic of the functional state of the central nervous system, Vestn. Tomsk. Gos. Univ., 2013, vol. 18, no. 5-3, p. 2831.

    Google Scholar 

  30. Verbruggen, F. and Logan, G.D., Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms, J. Exp. Psychol.: Gen., 2008, vol. 137, p. 649.

    Article  Google Scholar 

  31. Kamenskaya, V.G., Diagnostics of the chronotope in sensorimotor activity as a condition for the normal neuropsychic development of the preschooler, in Sovremennye tekhnologii praktichekoi psikhologii v sisteme obrazovaniya (Use of the Modern Methods of Practical Psychology in Education), St. Petersburg: Ross. Gos. Pedagog. Univ. im. A.I. Gertsena, 2001, p. 5.

    Google Scholar 

  32. Nikolaeva, E.I. and Vergunov, E.G., School performance and specific reactions of adolescence to a stochastic signal, in Psikhologiya cheloveka v sovremennom mire (Psychology of a Man in Modern World), Moscow: Inst. Psikhol., Ross. Akad. Nauk, 2009, part 4, p. 366.

    Google Scholar 

  33. Kamenskaya, V.G., Tomanov, L.V., and Russak, Y.A., Peculiarities of sensory-motor response in girls of 14–17 years with different rates of sexual maturation, Indian J. Sci. Technol., 2015, vol. 8, no. 29. doi 10.17485/ijst/2015/v8i29/84150

    Google Scholar 

  34. Pavlov, K.I. and Kamenskaya, V.G., Psychophysiological features and factor structure of sensorimotor reactions, sensorimotor integration, and selective attention of juvenile girls, Psikhol. Obraz. Polikul’t. Prostranstve, 2012, vol. 3, no. 19, p. 42.

    Google Scholar 

  35. Vergunov, E.G., Specific reactions of schoolchildren common in the 4th and 6th levels in various models of reflexometry, Mir Nauki, Kul’t. Obraz., 2009, no. 7-2, p. 116.

    Google Scholar 

  36. Vergunov, E.G. and Nikolaeva, E.I., Assessment of psycho-physiological cost of creativity in interdisciplinary researches, Vestn. Psikhofiziol., 2014, no. 1, p. 74.

    Google Scholar 

  37. Nikolaeva, E.I. and Yavrovich, K.N., Specific qualitative and speed characteristics of sensorimotor integration in young men and women with different lateral signs, Vopr. Psikhol., 2013, no. 5, p. 133.

    Google Scholar 

  38. Lien, Y.-J., Chen, W.J., Hsiao, P.C., and Tsuang, H.C., Estimation of heritability for varied indexes of handedness, Laterality, 2015, vol. 20, no. 4, p. 469.

    Article  PubMed  Google Scholar 

  39. van Agtmael, T., Forrest, S.M., Del-Favero, J., et al., Parametric and nonparametric genome scan analyses for human handedness, Eur. J. Hum. Genet., 2003, vol. 11, p. 779.

    Article  PubMed  CAS  Google Scholar 

  40. Warren, D.M., Stern, M., Duggirala, R., et al., Heritability and linkage analysis of hand, foot, and eye preference in Mexican Americans, Laterality, 2006, vol. 11, no. 6, p. 508.

    Article  PubMed  Google Scholar 

  41. Francks, C., Maegawa, S., Lauren, J., et al., LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia, Mol. Psychiatry, 2007, vol. 12, p. 1129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Scerri, T.S., Brandler, W.M., Paracchini, S., et al., PCSK6 is associated with handedness in individuals with dyslexia, Hum. Mol. Genet., 2011, vol. 20, no. 3, p. 608.

    Article  PubMed  CAS  Google Scholar 

  43. McManus, I.C., Davison, A., and Armour, J.A.L., Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies, Ann. N.Y. Acad. Sci., 2013, vol. 1288, no. 1, p. 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ocklenburg, S., Beste, C., and Güntürkün, O., Handedness: a neurogenetic shift of perspective, Neurosci. Biobehav. Rev., 2013, vol. 37, p. 2788-2793.

    Article  PubMed  Google Scholar 

  45. Armour, J.A., Davison, A., and McManus, I.C., Genome-wide association study of handedness excludes simple genetic models, Heredity, 2014, vol. 112, no. 3, p. 221.

    Article  PubMed  CAS  Google Scholar 

  46. Krivoshchekov, S.G., Leutin, V.P., and Chukhrova, M.G., Psikhofiziologicheskie aspekty nezavershennykh adaptatsii (Psychophysiological Aspects of Incomplete Adaptations), Novosibirsk: Sib. Otd., Ross. Akad. Med. Nauk, 1998.

    Google Scholar 

  47. Gavrilova, E.A., Heart rate variability and sports, Hum. Physiol., 2016, vol. 42, no. 5, p. 571.

    Article  Google Scholar 

  48. Critchley, H.D., Eccles, J., and Garfinkel, S.N., Interaction between cognition, emotion, and the autonomic nervous system, Handb. Clin. Neurol., 2013, vol. 117, p. 59.

    Article  PubMed  Google Scholar 

  49. Riftine, A., Theoretical review and clinical use, in Quantitative Assessment of the Autonomic Nervous System Based on Heart Rate Variability Analysis, Valley Stream, NY: Intellewave, 2016.

    Google Scholar 

  50. Lane, R., McRae, K., Reiman, E., et al., Neural correlates of heart rate variability during emotion, Neuro-Image, 2009, vol. 44, no. 1, p. 213.

    PubMed  Google Scholar 

  51. Sarang, P. and Telles, S., Effects of two yoga based relaxation techniques on heart rate variability (HRV), Int. J. Stress Manage., 2006, vol. 13, no. 4, p. 460.

    Article  Google Scholar 

  52. Fleishman, A.N., Variabel’nost’ ritma serdtsa i medlennye kolebaniya gemodinamiki: melineinye fenomeny v klinicheskoi praktike (Variability of Heart Rhythm and Slow Fluctuations of Hemodynamics: Nonlinear Phenomena in Clinical Practice), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2009.

    Google Scholar 

  53. Riftine, A., US Patent 8682421, 2014.

    Google Scholar 

  54. Divert, V.E., Vergunov, E.G., Balioz, N.V., et al., Vegetative balance of the organism and chemoreactive properties of cardiovascular system of mountain-climbers, Sib. Nauch. Med. Zh., 2017, no. 3, p. 72.

    Google Scholar 

  55. Weron, R., Estimating long range dependence: finite sample properties and confidence intervals, Phys. A (Amsterdam), 2002, vol. 312, p. 285. doi 10.1016/S0378-4371(02)00961-5

    Article  Google Scholar 

  56. Dubovikov, M.M., Starchenko, N.V., and Dubovikov, M.S., Dimension of the minimal cover and fractal analysis of time series, Phys. A (Amsterdam), 2004, vol. 339, p. 591. doi 10.1016/j.physa.2004.03.025

    Article  Google Scholar 

  57. Sánchez, M.Á, Trinidad, J.E., García, J., and Fernández, M., The effect of the underlying distribution in Hurst exponent estimation, PLoS One, 2015, vol. 10, no. 5, p. e0127824. doi 10.1371/journal. pone.0127824.eCollection2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Vergunov, E.G., Reaction rate to stimuli of different modalities of schoolchildren with different academic performance, Izv. Ross. Gos. Pedagog. Univ. im. A.I. Gertsena, 2009, no. 98, p. 255.

    Google Scholar 

  59. Nikolaeva, E.I. and Borisenkova, E.Yu., Comparison of different methods of assessment of the functional sensorimotor asymmetry in preschool children, Asimmetriya, 2008, vol. 2, no. 1, p. 32.

    Google Scholar 

  60. Yerkes, R.M. and Dodson, J.D., The relation of strength of muscles to rapidity of habit-formation, J. Comp. Neurol. Psychol., 1908, vol. 18, p. 459.

    Article  Google Scholar 

  61. Liston, C., McEwen, B.S., and Casey, B.J., Psychosocial stress reversibly disrupts prefrontal processing and attentional control, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 3, p. 912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Krivoshchekov.

Additional information

Original Russian Text © E.G. Vergunov, E.I. Nikolaeva, N.V. Balioz, S.G. Krivoshchekov, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 3, pp. 97–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergunov, E.G., Nikolaeva, E.I., Balioz, N.V. et al. Lateral Preferences as Possible Phenotypic Predictors of the Reserves of the Cardiovascular System and the Features of Sensorimotor Integration in Climbers. Hum Physiol 44, 320–329 (2018). https://doi.org/10.1134/S0362119718030143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718030143

Keywords

Navigation