Skip to main content
Log in

On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We continue describing integrable nonlinear chains of the form \(u^j_{n+1,x}=u^j_{n,x}+f(u^{j+1}_{n},u^{j}_n,u^j_{n+1 },u^{j-1}_{n+1})\) with three independent variables on the basis of the existence of a hierarchy of Darboux-integrable reductions. The classification algorithm is based on the well-known fact that characteristic algebras of Darboux-integrable systems have a finite dimension. We use a characteristic algebra in the \(x\)-direction, whose structure for a given class of models is defined by some polynomial \(P(\lambda)\) of degree not exceeding \(3\) in the known examples. We assume that \(P(\lambda)=\lambda^2\), the classification problem in that case reduces to finding eight unknown functions of a single variable. We obtain a rather narrow class of candidates for the integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the scheme proposed previously in [29].

References

  1. N. H. Ibragimov and A. B. Shabat, “Korteweg–de Vries equation from the group-theoretic point of view,” Soviet Phys. Dokl., 24, 15–17 (1979).

    ADS  MATH  Google Scholar 

  2. A. V. Zhiber and A. B. Shabat, “The Klein–Gordon equation with nontrivial group,” Soviet Phys. Dokl., 24, 607–609 (1979).

    ADS  Google Scholar 

  3. S. I. Svinolupov and V. V. Sokolov, “Evolution equations with nontrivial conservative laws,” Funct. Anal. Appl., 16, 317–319 (1982).

    Article  MATH  Google Scholar 

  4. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems,” Russian Math. Surveys, 42, 1–63 (1987).

    Article  ADS  MATH  Google Scholar 

  5. V. E. Adler, A. B. Shabat, and R. I. Yamilov, “Symmetry approach to the integrability problem,” Theoret. and Math. Phys., 125, 1603–1661 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Sokolov, Algebraic Structures in Integrability, World Sci., Singapore (2020).

    Book  MATH  Google Scholar 

  7. Y. Kodama and J. Gibbons, “A method for solving the dispersionless KP hierarchy and its exact solutions. II,” Phys. Lett. A, 135, 167–170 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Gibbons and S. P. Tsarev, “Reductions of the Benney equations,” Phys. Lett. A, 211, 19–24 (1996); “Conformal maps and reductions of the Benney equations,” Phys. Lett. A, 258, 263–270 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. V. Ferapontov, A. Moro, and V. S. Novikov, “Integrable equations in \(2 + 1\) dimensions: Deformations of dispersionless limits,” J. Phys. A: Math. Theor., 42, 345205, 18 pp. (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Odesskii and V. V. Sokolov, “Integrable pseudopotentials related to generalized hypergeometric functions,” Selecta Math. (N. S.), 16, 145–172 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Huard and V. S. Novikov, “On classification of integrable Davey–Stewartson type equations,” J. Phys. A: Math. Theor., 46, 275202, 13 pp. (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E. V. Ferapontov, V. S. Novikov, and I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D,” Int. Math. Res. Not. IMRN, 2015, 4933–4974 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach,” Commun. Math. Phys., 233, 513–543 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of integrable discrete equations of octahedron type,” Int. Math. Res. Not. IMRN, 2012, 1822–1889 (2012).

    MathSciNet  MATH  Google Scholar 

  15. M. V. Pavlov, “Classifying integrable Egoroff hydrodynamic chains,” Theoret. and Math. Phys., 138, 45–58 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L. V. Bogdanov and B. G. Konopelchenko, “On dispersionless BKP hierarchy and its reductions,” J. Nonlinear Math. Phys., 12, 64–73 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. D. M. J. Calderbank and B. Kruglikov, “Integrability via geometry: dispersionless differential equations in three and four dimensions,” Commun. Math. Phys., 382, 1811–1841 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. N. Kuznetsova, I. T. Habibullin, and A. R. Khakimova, “On the problem of classifying integrable chains with three independent variabl,” Theoret. and Math. Phys., 215, 667–690 (2023).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. I. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for \((2+1)\)-dimensional lattices,” Phys. Scr., 87, 065005, 5 pp. (2013).

    Article  ADS  MATH  Google Scholar 

  20. M. N. Poptsova and I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability,” Ufa Math. J., 10, 86–105 (2018).

    Article  MathSciNet  Google Scholar 

  21. I. T. Habibullin and A. R. Khakimova, “Characteristic Lie algebras of integrable differential- difference equations in 3D,” J. Phys. A: Math. Theor., 54, 295202, 34 pp. (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. T. Habibullin and M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices,” Theoret. and Math. Phys., 203, 569–581 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, and V. S. Novikov, “On a class of 2D integrable lattice equations,” J. Math. Phys., 61, 073505, 15 pp. (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Quatrième partie, Gauthier-Villars, Paris (1887–1896).

    MATH  Google Scholar 

  25. A. B. Shabat and R. I. Yamilov, Exponential systems of type I and the Cartan matrices (Preprint BFAN SSSR), Ufa, 1981.

  26. A. N. Leznov, V. G. Smirnov, and A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems,” Theoret. and Math. Phys., 51, 322–330 (1982).

    Article  ADS  MATH  Google Scholar 

  27. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, and A. B. Shabat, Characteristic Lie Rings and Nonlinear Integrable Equations [in Russian], Institute of Computer Studies, Moscow (2012).

    Google Scholar 

  28. V. E. Adler and S. Ya. Startsev, “Discrete analogues of the Liouville equation,” Theoret. and Math. Phys., 121, 1484–1495 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. I. Habibullin, N. Zheltukhina, and A. Pekcan, “On the classification of Darboux integrable chains,” J. Math. Phys., 49, 102702, 39 pp. (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. I. Habibullin, N. Zheltukhina, and A. Pekcan, “Complete list of Darboux integrable chains of the form \(t_{1x}=t_x+d(t,t_1)\),” J. Math. Phys., 50, 102710, 23 pp. (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices,” Theoret. and Math. Phys., 182, 189–210 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. V. Zhiber and M. N. Kuznetsova, “Integrals and characteristic Lie rings of semi-discrete systems of equations,” Ufa Math. J., 13, 22–32 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  33. I. T. Habibullin and A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph,” Theoret. and Math. Phys., 213, 1589–1612 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. V. E. Adler, “The tangential map and associated integrable equations,” J. Phys. A: Math. Theor., 42, 332004, 12 pp. (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. G. S. Rinehart, “Differential forms for general commutative algebras,” Trans. Amer. Math. Soc., 108, 195–222 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. N. Kuznetsova, Private communication (2023).

  37. I. T. Habibullin, A. R. Khakimova, A. U. Sakieva, “Miura-type transformations for integrable lattices in 3D,” Mathematics, 11, 3522, 15 pp. (2023).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 21-11-00006, https://rscf.ru/en/project/21-11-00006/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Habibullin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 142–178 https://doi.org/10.4213/tmf10513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibullin, I.T., Khakimova, A.R. On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras. Theor Math Phys 217, 1541–1573 (2023). https://doi.org/10.1134/S0040577923100094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100094

Keywords

Navigation