Skip to main content
Log in

Elliptic hypergeometric function and \(6j\)-symbols for the \(SL(2,{\mathbb C})\) group

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the complex hypergeometric function describing \(6j\)-symbols for the \(SL(2,\mathbb C)\) group is a special degeneration of the \(V\)-function—an elliptic analogue of the Euler–Gauss \({}_2F_1\) hypergeometric function. For this function, we derive mixed difference–recurrence relations as limit forms of the elliptic hypergeometric equation and some symmetry transformations. At the intermediate steps of computations, there emerge a function describing the \(6j\)-symbols for the Faddeev modular double and the corresponding difference equations and symmetry transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, R. Askey, and R. Roy, Special Functions (Encyclopedia of Mathematics and its Applications, Vol. 71), Cambridge Univ. Press, Cambridge (1999).

    Book  Google Scholar 

  2. N. Ja. Vilenkin, Special Functions and the Theory of Group Representations, (Translations of Mathematical Monographs, Vol. 22), AMS, Providence, RI (1968).

    Book  Google Scholar 

  3. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Sci., Singapore (1988).

    Book  Google Scholar 

  4. G. Racah, “Theory of complex spectra. II,” Phys. Rev., 62, 438–462 (1942).

    Article  ADS  Google Scholar 

  5. R. Askey and J. Wilson, Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials (Memoirs of the American Mathematical Society, Vol. 54), AMS, Providence, RI (1985).

    MATH  Google Scholar 

  6. W. Groenevelt, “Wilson function transforms related to Racah coefficients,” Acta Appl. Math., 91, 133–191 (2006).

    Article  MathSciNet  Google Scholar 

  7. A. N. Kirillov and N. Yu. Reshetikhin, “Representations of the algebra \(U_q(sl(2))\), \(q\)-orthogonal polynomials and invariants of links,” (Advanced Series in Mathematical Physics, Vol. 11), in: New Developments in the Theory of Knots, World Sci., Singapore (1990), pp. 202–256.

    Chapter  Google Scholar 

  8. R. S. Ismagilov, “Racah operators for principal series of representations of the group \(\mathrm {SL}(2,\mathbb C)\),” Sb. Math., 198, 369–381 (2007).

    Article  MathSciNet  Google Scholar 

  9. S. E. Derkachev and V. P. Spiridonov, “The \(6j\)-symbols for the \(SL(2,\mathbb C)\) group,” Theoret. and Math. Phys., 198, 29–47 (2019); arXiv: 1711.07073.

    ADS  MathSciNet  Google Scholar 

  10. L. D. Faddeev, “Modular double of a quantum group,” in: Conférence Moshé Flato 1999: Quantization, Deformation, and Symmetries, Vol. 1 (Dijon, France, September 5–8, 1999, Mathematical Physics Studies, Vol. 21, G. Dito and D. Sternheimer, eds.), Kluwer, Dordrecht (2000), pp. 149–156.

    Google Scholar 

  11. B. Ponsot and J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of \(U_q(sl(2,\mathbb R))\),” Commun. Math. Phys., 224, 613–655 (2001); arXiv: math/0007097.

    Article  ADS  MathSciNet  Google Scholar 

  12. L. D. Faddeev, “Current-like variables in massive and massless integrable models,” in: Quantum Groups and their Applications in Physics (Varenna, Italy, 1994, Proceedings of the International School of Physics “Enrico Fermi”, Vol. 127), IOS Press, Amsterdam (1996), pp. 117–135; arXiv: hep-th/9408041.

    MATH  Google Scholar 

  13. L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group,” Lett. Math. Phys., 34, 249–254 (1995); arXiv: hep-th/9504111.

    Article  ADS  MathSciNet  Google Scholar 

  14. S. N. M. Ruijsenaars, “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type,” Commun. Math. Phys., 206, 639–690 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. B. Frenkel and V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions,” in: The Arnold–Gelfand Mathematical Seminars (V. I. Arnold, I. M. Gelfand, V. S. Retakh, and M. Smirnov, eds.), Birkhäuser, Boston, MA (1997), pp. 171–204.

    Chapter  Google Scholar 

  16. V. P. Spiridonov, “Theta hypergeometric integrals,” St. Petersburg Math. J., 15, 929–967 (2004); arXiv: math.CA/0303205.

    Article  MathSciNet  Google Scholar 

  17. V. P. Spiridonov, Elliptic hypergeometric functions (Dr. Sci. thesis), JINR, Dubna (2004); arXiv: 1610.01557.

    MATH  Google Scholar 

  18. V. P. Spiridonov, “Elliptic hypergeometric functions and Calogero–Sutherland-type models,” Theoret. and Math. Phys., 150, 266–277 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. A. Sarkissian and V. P. Spiridonov, “The endless beta integrals,” SIGMA, 16, 074, 21 pp. (2020); arXiv: 2005.01059.

    MathSciNet  MATH  Google Scholar 

  20. V. P. Spiridonov, “On the elliptic beta function,” Russian Math. Surveys, 56, 185–186 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. E. Derkachov and A. N. Manashov, “On complex gamma-function integrals,” SIGMA, 16, 003, 20 pp. (2020); arXiv: 1908.01530.

    MathSciNet  MATH  Google Scholar 

  22. G. A. Sarkissian and V. P. Spiridonov, “Rational hypergeometric identities,” Funct. Anal. Appl., 55, 250–255 (2021); arXiv: 2012.10265.

    Article  MathSciNet  Google Scholar 

  23. I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Related Problems of Representation Theory [in Russian], Fizmatgiz, Moscow (1962).

    MATH  Google Scholar 

  24. S. E. Derkachov, A. N. Manashov, and P. A. Valinevich, “Gustafson integrals for \(SL(2,\mathbb C)\) spin magnet,” J. Phys. A: Math. Theor., 50, 294007, 12 pp. (2017).

    Article  MathSciNet  Google Scholar 

  25. Yu. A. Neretin, “Barnes–Ismagilov integrals and hypergeometric functions of the complex field,” SIGMA, 16, 072, 20 pp. (2020); arXiv: 1910.10686.

    MathSciNet  MATH  Google Scholar 

  26. M. A. Najmark, “Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. I: The case of a tensor product of representations of the basic series,” Am. Math. Soc. Transl. Ser. 2, 36, 101–136 (1964).

    MATH  Google Scholar 

  27. S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems,” J. Math. Phys., 38, 1069–1146 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, “Unitary representations of \(U_q(\mathfrak{sl}(2,\mathbb R)\), the modular double, and the multiparticle \(q\)-deformed Toda chains,” Commun. Math. Phys., 225, 573–609 (2002); arXiv: hep-th/0102180.

    Article  ADS  Google Scholar 

  29. V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, “Exact solution of the Faddeev–Volkov model,” Phys. Lett. A, 372, 1547–1550 (2008); arXiv: 0706.3077.

    Article  ADS  MathSciNet  Google Scholar 

  30. E. M. Rains, “Limits of elliptic hypergeometric integrals,” Ramanujan J., 18, 257–306 (2009).

    Article  MathSciNet  Google Scholar 

  31. F. J. van de Bult, E. M. Rains, and J. V. Stokman, “Properties of generalized univariate hypergeometric functions,” Commun. Math. Phys., 275, 37–95 (2007); arXiv: math/0607250.

    Article  ADS  MathSciNet  Google Scholar 

  32. G. A. Sarkissian and V. P. Spiridonov, “Complex hypergeometric functions and integrable many- body problems,” J. Phys. A: Math. Theor., 55, 385203, 17 pp. (2022); arXiv: 2105.15031.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This study has been partially funded within the framework of the HSE University Basic Research Program and by the Russian Science Foundation (project No. 19-11-00131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Spiridonov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 108–128 https://doi.org/10.4213/tmf10201.

Appendix A. Details of the $$b\to i$$ asymptotics computations

In this appendix, we give asymptotic estimates for hyperbolic gamma functions in the limit \(\delta\to 0^+\), which in combination reduce the \(6j\)-symbols for the Faddeev modular double (3.9) to \(6j\)-symbols for the \(SL(2,\mathbb C)\) group (2.11). The constraints on parameters were indicated in the main body of the paper:

$$\begin{aligned} \, &S_{i+\delta}(\mu_a-z)\to e^{(\pi i/2)(T_a+N)^2} (4\pi\delta)^{i(U_a+u)-1}\boldsymbol\Gamma(U_a+u,T_a+N), \\ &S_{i+\delta}(\nu_a+z)\to e^{(\pi i/2)(S_a-N)^2}(4\pi\delta)^{i(R_a-u )-1} \boldsymbol\Gamma(R_a-u,S_a-N), \\ &S_{i+\delta}(\alpha_s+\alpha_2-\alpha_1) \to e^{(\pi i/2)A_1^2}(4\pi\delta)^{i(\sigma_1-\sigma_2+\rho_2)} \boldsymbol\Gamma(\sigma_1-\sigma_2+\rho_2-i,A_1), \\ &S_{i+\delta}(\alpha_1+\alpha_t-\alpha_4)\to e^{(\pi i/2) A_4^2} \frac{(4\pi\delta)^{i(-\sigma_1-\sigma_4-\rho_1)}(-1)^{A_4}} {\boldsymbol\Gamma(\sigma_1+\sigma_4+\rho_1-i,A_4)}, \\ &S_{i+\delta}(\alpha_2+\alpha_t-\alpha_3)\to e^{(\pi i/2)A_2^2} \frac{(4\pi\delta)^{i(-\sigma_2+\sigma_3-\rho_1)}(-1)^{A_2}} {\boldsymbol\Gamma(\sigma_2-\sigma_3+\rho_1-i,A_2)}, \\ &S_{i+\delta}(\alpha_3+\alpha_s-\alpha_4)\to e^{(\pi i/2)A_3^2} (4\pi\delta)^{i(-\sigma_3-\sigma_4+\rho_2)} \boldsymbol\Gamma(-\sigma_3-\sigma_4+\rho_2-i,A_3), \\ &|S_{i+\delta}(2\alpha_t)|^2\to(4\pi\delta)^2\frac{M_1^2+4\rho_1^2}{4}. \end{aligned} $$
(A.1)

Appendix B. A check of Eq. (6.6)

We verify difference equation (6.6) for some particular choices of the parameters. Namely, we remark that integral (4.28) can be explicitly computed if, say, \(\mu_4+ \nu_4= Q\) and \(\sum_a^3(\mu_a+\nu_a)=Q\). In this case, \(\gamma^{(2)}(\mu_4-z;\omega_1,\omega_2)\gamma^{(2)}(\nu_4+z;\omega_1,\omega_2)\!=\! 1\) and

$$\begin{aligned} \, J_h(\underline\mu,\underline\nu) &=\int_{-i\infty}^{i\infty}\prod_{a=1}^3\gamma^{(2)}(\mu_a-z;\omega_1,\omega_2) \gamma^{(2)}(\nu_a+z;\omega_1,\omega_2)\,\frac{dz}{i\sqrt{\omega_1\omega_2}}= \nonumber \\ &=\prod_{a,b=1}^3\gamma^{(2)}(\mu_a+\nu_b;\omega_1,\omega_2). \end{aligned}$$
(B.1)
Similarly, if \(n_4+m_4=0\) and \(s_4+t_4=-2i\), then \(\boldsymbol\Gamma(s_4-y,n_4-N)\boldsymbol\Gamma(t_4+y,m_4+N)=(-1)^{N-n_4}\). As a result, for
$$\sum_{a=1}^3(n_a+m_a)=0,\qquad\sum_{a=1}^3(s_a+t_a)=-2i,$$
we have [19]
$$\begin{aligned} \, \mathcal J_{\mathrm{cr}}(\underline s,\underline n;\underline t,\underline m) &=\frac{1}{4\pi}\sum_{N\in\mathbb Z}(-1)^{N-n_4}\int_{-\infty}^\infty \prod_{a=1}^3\boldsymbol\Gamma(s_a-y,n_a-N)\boldsymbol\Gamma(t_a+y,m_a+N)\,dy= \nonumber \\ &=(-1)^{\sum_{a=1}^4n_a}F(\underline s,\underline n;\underline t,\underline m), \end{aligned}$$
(B.2)
where
$$F(\underline s,\underline n;\underline t,\underline m) =\prod_{a,b=1}^3\boldsymbol\Gamma(s_a+t_b,n_a+m_b). $$
(B.3)
From the equations
$$\boldsymbol\Gamma(x-i,n-1)=\frac{\boldsymbol\Gamma(x,n)(n-ix)}{2},\qquad \boldsymbol\Gamma(x+i,n+1)=\frac{\boldsymbol\Gamma(x,n)}{n/2-ix/2+1} $$
(B.4)
and parameterization (6.7), we find
$$F(s_2-i,n_2-1,s_3+i,n_3+1)=\prod_{a=1}^3 \frac{\beta_2+\gamma_a}{\beta_3+\gamma_a-1} F(\underline s,\underline n;\underline t,\underline m),\qquad\;$$
(B.5)
$$\frac{\boldsymbol\Gamma(s_2-s_4,n_2-n_4)\boldsymbol\Gamma(s_3-s_4,n_3-n_4)} {\boldsymbol\Gamma(s_2-i-s_4,n_2-1-n_4)\boldsymbol\Gamma(s_3+i-s_4,n_3+1-n_4)} =\frac{\beta_3-\beta_4-1}{\beta_2-\beta_4}.$$
(B.6)

As a result, imposing the above constraints on the parameters and relations (B.5), (B.6), we obtain the algebraic equation

$$\begin{aligned} \, &(\beta_2-\beta_4-1)(\beta_3-\beta_4)(\beta_3-\beta_2+1)\biggl[\,\prod_{k=1}^3(\beta_2+\gamma_k)(\beta_3-\beta_4-1) +\prod_{k=1}^3(\beta_3+\gamma_k-1)(\beta_4-\beta_2)\biggr]+{} \nonumber \\ &\quad{}+(\beta_3-\beta_4-1)(\beta_2-\beta_4)(\beta_3-\beta_2-1)\biggl[\,\prod_{k=1}^3(\beta_3+\gamma_k)(\beta_2-\beta_4-1) +\prod_{k=1}^3(\beta_2+\gamma_k-1)(\beta_4-\beta_3)\biggr]-{} \nonumber \\ &\quad{}-(\beta_2-\beta_3)(\beta_3-\beta_2+1)(\beta_3-\beta_2-1) \prod_{k=1}^3(\beta_4+\gamma_k)=0, \end{aligned}$$
(B.7)
which is identically satisfied. Taking the limit \(\beta_4\to\infty\) in (B.7), we obtain
$$\begin{aligned} \, &(\beta_3-\beta_2+1)\biggl(\,\prod_{k=1}^3(\beta_2+\gamma_k) -\prod_{k=1}^3(\beta_3+\gamma_k-1)\biggr)+{}\nonumber\\ &\quad{}+(\beta_3-\beta_2-1)\biggl(\,\prod_{k=1}^3(\beta_3+\gamma_k) -\prod_{k=1}^3(\beta_2+\gamma_k-1)\biggr)+{} \nonumber \\ &\quad{}+(\beta_3-\beta_2+1)(\beta_3-\beta_2-1)(\beta_2-\beta_3)=0, \end{aligned}$$
(B.8)
which leads to a difference equation for function (B.3),
$$\begin{aligned} \, &\mathcal V(\underline s,\underline n;\underline t,\underline m) (F(s_2-i,n_2-1,s_3+i,n_3+1)-F(s_2,n_2,s_3,n_3)) +(2\leftrightarrow 3)+F(s_2,n_2,s_3,n_3)=0, \end{aligned}$$
(B.9)
where
$$\mathcal V(\underline s,\underline n;\underline t,\underline m) =\frac{\prod_{k=1}^3(\beta_3+\gamma_k-1)}{(\beta_3-\beta_2-1)(\beta_2-\beta_3)}. $$
(B.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachov, S.E., Sarkissian, G.A. & Spiridonov, V.P. Elliptic hypergeometric function and \(6j\)-symbols for the \(SL(2,{\mathbb C})\) group. Theor Math Phys 213, 1406–1422 (2022). https://doi.org/10.1134/S0040577922100087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922100087

Keywords

Navigation