Skip to main content
Log in

A Whipple \(_7F_6\) Formula Revisited

  • Original Research Article
  • Published:
La Matematica Aims and scope Submit manuscript

Abstract

A well-known formula of Whipple relates certain hypergeometric values \(_7F_6(1)\) and \(_4F_3(1)\). In this paper, we revisit this relation from the viewpoint of the underlying hypergeometric data HD, to which there are also associated hypergeometric character sums and Galois representations. We explain a special structure behind Whipple’s formula when the hypergeometric data HD are primitive and self-dual. If the data are also defined over \(\mathbb Q\), by the work of Katz, Beukers, Cohen, and Mellit, there are compatible families of \(\ell \)-adic representations of the absolute Galois group of \(\mathbb Q\) attached to HD. For specialized choices of HD, these Galois representations are shown to be decomposable and automorphic. As a consequence, the values of the corresponding hypergeometric character sums can be explicitly expressed in terms of Fourier coefficients of certain modular forms. We further relate the hypergeometric values \(_7F_6(1)\) in Whipple’s formula to the periods of these modular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As an element in a global field, \(\lambda \) in different settings below is suitably interpreted: in (1), \(\lambda \) is viewed as a complex number via an embedding of the cyclotomic field in \(\mathbb C\), while in (2), \(\lambda \) is viewed as an element in the residue field of a nonarchimedean place of the cyclotomic field, when appropriate.

  2. The Legendre relation for L(k) is \(E(k)K(\sqrt{1-k^2})+K(k)E(\sqrt{1-k^2})-K(k)K(\sqrt{1-k^2})=\frac{\pi }{2}\), which is a pairing between \(H^0(L(k),\Omega _{V(1)})\) and \(H^1(L(k), {\mathcal {O}}_{V(1)})\).

  3. Here, e is set to be \(\frac{1-p}{2}\) instead of the target \(\frac{1}{2}\) so that the Gamma quotient on the right-hand side of (26) is a finite value.

  4. If we denote \( g(\tau )=f_{8.6.a.a}(\tau /2)\), then

    $$\begin{aligned} g(\tau \pm 1/2) =&i^{\pm } \left( \left( \frac{\eta (2\tau )^{3}}{\eta (\tau )\eta (4\tau )}\right) ^{12}-32\eta (2\tau )^{12}\left( \frac{\eta (4\tau )}{\eta (\tau )}\right) ^{4} \right) =i^{\pm }f_{16.6.a.a}\left( \frac{\tau }{2}\right) , \end{aligned}$$

    where \(f_{16.6.a.a}\) is the quadratic twist of \(f_{8.6.a.a}\) by \(\chi _{-1}\). It follows that

    $$\begin{aligned} _6F_5(HD_1(\frac{1}{2},\frac{1}{2}))= -4i \left( \int _{i/2}^{i\infty }f_{16.6.a.a}\left( \frac{\tau }{2}\right) (4\tau ^2+1) d\tau \right) . \end{aligned}$$
    (43)

References

  1. Ahlgren, S.: Gaussian hypergeometric series and combinatorial congruences. In Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), volume 4 of Dev. Math., pages 1–12. Kluwer Acad. Publ., Dordrecht (2001)

  2. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of \(K3\) surfaces. Am. J. Math. 124(2), 353–368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Atkin, A.O.L., Winnie Li, W.-C., Long, L.: On Atkin and Swinnerton-Dyer congruence relations. II. Math. Ann. 340(2), 335–358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atkin, A.O.L., Winnie Li, W.-C., Liu, T., Long, L.: Galois representations with quaternion multiplication associated to noncongruence modular forms. Trans. Am. Math. Soc. 365(12), 6217–6242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bailey, W.N.: Some transformations of generalized hypergeometric series, and contour integrals of Barnes’s type. Quart. J. Math. Oxford 3(11), 168–182 (1932)

    Article  MATH  Google Scholar 

  7. Berndt, B.C., Bhargava, S., Garvan, F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Am. Math. Soc. 347(11), 4163–4244 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Beukers, F.: Fields of definition of finite hypergeometric functions. In 2017 MATRIX annals, volume 2 of MATRIX Book Ser., Springer, Cham pp. 391–400 (2019)

  9. Beukers, F.: Notes of differential equations and hypergeometric functions. unpublished notes

  10. Beukers, F., Vlasenko, M.: Dwork Crystals I. Int. Math. Res. Not. 2021(12), 8807–8844 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beukers, F., Vlasenko, M.: Dwork crystals II. Int. Math. Res. Not. 2021(6), 4427–4444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beukers, F., Cohen, H., Mellit, A.: Finite hypergeometric functions. Pure Appl. Math. Q. 11(4), 559–589 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borwein, J.M., Borwein, P.B.: Pi and the AGM, volume 4 of Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York. A study in analytic number theory and computational complexity, Reprint of the 1987 original, A Wiley-Interscience Publication (1998)

  14. Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343(1), 35–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clifford, A.H.: Representations induced in an invariant subgroup. Ann. Math. (2) 38(3), 533–550 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  16. Congruence Subgroups of \(PSL(2, \mathbb{Z})\). https://mathstats.uncg.edu/sites/pauli/congruence/congruence.html. Chris Cummins, Sebastian Pauli

  17. Curtis, C.W., Irving, R.: Representation theory of finite groups and associative algebras. AMS Chelsea Publishing, Providence, RI. Reprint of the 1962 original (2006)

  18. Deines, A., Fuselier, J.G., Long, L., Swisher, H., Fang-Ting, T.: Generalized Legendre curves and quaternionic multiplication. J. Number Theory 161, 175–203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dembélé, L., Panchishkin, A., Voight, J., Zudilin, W.: Special hypergeometric motives and their L-functions: Asai recognition. Exp. Math. 0(0), 1–23 (2020)

    Article  Google Scholar 

  20. Dieulefait, L.V.: Computing the level of a modular rigid Calabi–Yau threefold. Exp. Math. 13(2), 165–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dwork, B.: \(p\)-adic cycles. Inst. Hautes Études Sci. Publ. Math. 37, 27–115 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, R., Greene, J.: Clausen’s theorem and hypergeometric functions over finite fields. Finite Fields Appl. 15(1), 97–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fang-Ting, T., Yang, Y.: Evaluation of certain hypergeometric functions over finite fields. SIGMA 14(2018), 050 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Frechette, S., Ono, K., Papanikolas, M.: Combinatorics of traces of Hecke operators. Proc. Natl. Acad. Sci. USA 101(49), 17016–17020 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fuselier, J.G.: Hypergeometric functions over \(\mathbb{F}_p\) and relations to elliptic curves and modular forms. Proc. Am. Math. Soc. 138(1), 109–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fuselier, J.G.: Traces of Hecke operators in level 1 and Gaussian hypergeometric functions. Proc. Am. Math. Soc. 141(6), 1871–1881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fuselier, J.G., Long, L., Ramakrishna, R., Swisher, H., Tu, F.-T.: Hypergeometric functions over finite fields. Memoirs of AMS (2022)

  28. Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301(1), 77–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoffman, J.W., Fang-Ting, T.: Transformations of Hypergeometric Motives. arxiv:2003.05031 (2020)

  30. Jacquet, H., Langlands, R.P.: Automorphic forms on \({\rm GL}(2)\). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

  31. Katz, N. M.: \(p\)-adic properties of modular schemes and modular forms. In Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 69–190. Lecture Notes in Mathematics, Vol. 350 (1973)

  32. Katz, N.M.: Exponential Sums and Differential Equations, vol. 124. Princeton University Press, Princeton, NJ (1990)

    Book  MATH  Google Scholar 

  33. Katz, N.M.: Another look at the Dwork family. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progr. Math., pp. 89–126. Birkhäuser Boston, Inc., Boston, MA (2009)

  34. Kilbourn, T.: An extension of the Apéry number supercongruence. Acta Arith 123(4), 335–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Koike, M.: Hypergeometric series over finite fields and Apéry numbers. Hiroshima Math. J. 22(3), 461–467 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kontsevich, M., Zagier, D.: Periods. In Mathematics unlimited—2001 and beyond. Springer, Berlin pp. 771–808 (2001)

  37. Long, L.: On a Shioda-Inose structure of a family of \(K3\) surfaces. In Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), volume 38 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI pp. 201–207(2003)

  38. Long, L.: Some numeric hypergeometric supercongruences. In Vertex operator algebras, number theory and related topics, volume 753 of Contemp. Math. Amer. Math. Soc., Providence, RI pp. 139–156 (2020)

  39. Long, L., Ramakrishna, R.: Some supercongruences occurring in truncated hypergeometric series. Adv. Math. 290, 773–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Long, L., Tu, F.-T., Yui, N., Zudilin, W.: Supercongruences for rigid hypergeometric Calabi-Yau threefolds. Adv. Math. 393, 108058 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. McCarthy, D.: On a supercongruence conjecture of Rodriguez-Villegas. Proc. Am. Math. Soc. 140(7), 2241–2254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. McCarthy, D.: Transformations of well-poised hypergeometric functions over finite fields. Finite Fields Appl. 18(6), 1133–1147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. McCarthy, D., Papanikolas, M.A.: A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform. Int. J. Number Theory 11(8), 2431–2450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds

  45. Ono, K.: Values of Gaussian hypergeometric series. Trans. Am. Math. Soc. 350(3), 1205–1223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Osburn, R., Straub, A.: Interpolated sequences and critical \(L\)-values of modular forms. In Elliptic integrals, elliptic functions and modular forms in quantum field theory, Texts Monogr. Symbol. Comput., pp. 327–349. Springer, Cham (2019)

  47. Osburn, R., Straub, A., Zudilin, W.: A modular supercongruence for \({}_6F_5\): an Apéry-like story. Ann. Inst. Fourier (Grenoble) 68(5), 1987–2004 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Roberts, D. P., Villegas, F. R.: Hypergeometric supercongruences. 2017 MATRIX Annals, Springer, Cham, pp. 435–439 (2019)

  49. Rodriguez-Villegas, F.: Hypergeometric motives. (2017)

  50. Salerno, A.: Counting points over finite fields and hypergeometric functions. Funct. Approx. Comment. Math. 49(1), 137–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de \({\rm Gal}(\overline{ Q}/{ Q})\). Duke Math. J. 54(1), 179–230 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shimura, G.: Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ. Reprint of the 1971 original, Kanô Memorial Lectures, 1 (1994)

  53. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  54. Stienstra, J., Beukers, F.: On the Picard-Fuchs equation and the formal Brauer group of certain elliptic \(K3\)-surfaces. Math. Ann. 271(2), 269–304 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stiller, P.: Special values of Dirichlet series, monodromy, and the periods of automorphic forms. Mem. Am. Math. Soc. 49(299), iv+116 (1984)

    MathSciNet  MATH  Google Scholar 

  56. Watkins, M.: Hypergeometric motiveshypergeometric motives over \({\mathbb{Q}}\) and their \(L\)-functions. http://magma.maths.usyd.edu.au/~watkins/papers/known.pdf, (2017)

  57. Weil, A.: Jacobi sums as “Grössencharaktere’’. Trans. Am. Math. Soc. 73, 487–495 (1952)

    MATH  Google Scholar 

  58. Winnie Li, W.-C., Long, L., Tu, F.-T.: Computing special L-values of certain modular forms with complex multiplication. SIGMA 14(2018), 090 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Winnie Li, W.-C., Liu, T., Long, L.: Potentially \({\rm GL}_2\)-type Galois representations associated to noncongruence modular forms. Trans. Am. Math. Soc. 371(8), 5341–5377 (2019)

    MATH  MathSciNet  Google Scholar 

  60. Yang, Y.: On differential equations satisfied by modular forms. Math. Z. 246(1–2), 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yoshida, M.: Fuchsian differential equations. Aspects of Mathematics, E11. Friedr. Vieweg & Sohn, Braunschweig. With special emphasis on the Gauss-Schwarz theory (1987)

  62. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of modular forms. Universitext, pp. 1–103. Springer, Berlin (2008)

  63. Zagier, D.: The arithmetic and topology of differential equations. In European Congress of Mathematics, pp. 717–776. Eur. Math. Soc., Zürich (2018)

  64. Zudilin, W.: Hypergeometric heritage of W. N. Bailey. ICCM Not. 7(2), 32–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Li is partially supported by Simons Foundation Grant # 355798. Long was supported in part by NSF DMS # 1602047 and the paper was written during her sabbatical leave in Fall 2020. The first two authors are grateful for their visits to the National Center for Theoretical Sciences in 2019. Moreover, the authors would like to thank Dr. Siu-Hung Ng, Wadim Zudilin, and the anonymous referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WC.W., Long, L. & Tu, FT. A Whipple \(_7F_6\) Formula Revisited. La Matematica 1, 480–530 (2022). https://doi.org/10.1007/s44007-021-00015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44007-021-00015-6

Keywords

Mathematics Subject Classification

Navigation