Skip to main content
Log in

Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of \(H^{3+2}\) Hamiltonian systems

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct joint \(2\times2\) matrix solutions of the scalar linear evolution equations \(\Psi'_{s_k}=H^{3+2}_{s_k}(s_1,s_2, x_1,x_2, \partial/\partial x_1,\partial/\partial x_2)\Psi\) with times \(s_1\) and \(s_2\), which can be treated as analogues of the time-dependent Schrödinger equations. These equations correspond to the so-called \(H^{3+2}\) Hamiltonian system, which is a representative of a hierarchy of degenerations of the isomonodromic Garnier system described by Kimura in 1986. This compatible system of Hamiltonian ordinary differential equations is defined by two different Hamiltonians \(H^{3+2}_{s_k}(s_1,s_2,q_1,q_2,p_1,p_2)\), \(k=1,2\), with two degrees of freedom corresponding to the time variables \(s_1\) and \(s_2\). In terms of solutions of the linear systems of ordinary differential equations obtained by the isomonodromic deformation method, with the compatibility condition given by the Hamilton equations of the \(H^{3+2}\) system, the constructed compatible solutions of analogues of the time-dependent Schrödinger equations are presented explicitly. We also present a change of variables relating the matrix solutions of analogues of the time-dependent Schrödinger equations defined by two forms of the \(H^{3+2}\) system (rational and polynomial in coordinates). This system is a quantum analogue of the well-known canonical transformation relating the Hamilton equations of the \(H^{3+2}\) system in these two forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Garnier, “Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre su’erieur dont l’intégrale générale a ses points critiques fixes,” Ann. Sci. École Norm. Sup., 29, 1–126 (1912).

    Article  MathSciNet  MATH  Google Scholar 

  2. B. I. Suleimanov, “The Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations [in Russian],” in: Asymptotic Properties of Solutions of Differential Equations, Inst. Mat., Ufa (1988), pp. 93–102.

    Google Scholar 

  3. B. I. Suleimanov, “The Hamilton property of Painlevé equations and the method of isomonodromic deformations,” Differ. Equ., 30, 726–732 (1994).

    MATH  Google Scholar 

  4. B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom,” Funct. Anal. Appl., 48, 198–207 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bloemendal and B. Virág, “Limits of spiked random matrices I.,” Probab. Theory Related Fields, 156, 795–825 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bloemendal and B. Virág, “Limits of spiked random matrices II,” Ann. Probab., 44, 2726–2769 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Conte, “Generalized Bonnet surfaces and Lax pairs of P\(_\mathrm{VI}\),” J. Math. Phys., 58, 103508, 31 pp. (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Conte and I. Dornic, “The master Painlevé VI heat equation,” C. R. Math. Acad. Sci. Paris, 352, 803–806 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Grava, A. Its, A. Kapaev, and F. Mezzadri, “On the Tracy–Widom\(_\beta\) distribution for \(\beta=6\),” SIGMA, 12, 105, 26 pp. (2016); arXiv: 1607.01351.

    ADS  MathSciNet  MATH  Google Scholar 

  10. A. M. Grundland and D. Riglioni, “Classical-quantum correspondence for shape-invariant systems,” J. Phys. A: Math. Theor., 48, 245201, 15 pp. (2015); arXiv: 1405.0968.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Levin, M. Olshanetsky, and A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations,” JHEP, 2014, 109, 29 pp. (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations,” J. Math. Phys., 52, 083509, 16 pp. (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Nagoya and Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations,” Ann. Henri Poincaré, 15, 313–344 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. P. Novikov, “A monodromy problem and some functions connected with Painlevé VI,” in: Painlevé Equations and Related Topics (Proceedings of International Conference, Saint Petersburg, Russia, June 17–23, 2011), Euler International Mathematical Institute, St.-Petersburg (2011), pp. 118–121.

    Google Scholar 

  15. H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation,” arXiv: 1312.5879.

  16. H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: A summary,” Comm. Math. Phys., 340, 1143–1170 (2015); arXiv: 1503.02833.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I. Rumanov, “Hard edge for \(\beta\)-ensembles and Painlevé III,” Int. Math. Res. Not., 2014, 6576–6617 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Rumanov, “Classical integrability for beta-ensembles and general Fokker–Planck equations,” J. Math. Phys., 56, 013508, 16 pp. (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. I. Rumanov, “Beta ensembles, quantum Painlevé equations and isomonodromy systems,” in: Algebraic and Geometric Aspects of Integrable Systems and Painlevé Equations (Boston, MA, 2012, Contemporary Mathematics, Vol. 593, A. Dzhamay, K. Maruno, and V. U. Pierce, eds.), AMS, Providence, RI (2013), pp. 125–155.

    MATH  Google Scholar 

  20. I. Rumanov, “Painlevé representation of Tracy–Widom\(_\beta\) distribution for \(\beta=6\),” Comm. Math. Phys., 342, 843–868 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H. Sakai, Isomonodromic deformation and 4-dimensional Painlevé-type equations, University of Tokyo, Tokyo (2010).

    Google Scholar 

  22. A. H. Sakka, “Linear problems and hierarchies of Painlevé equations,” J. Phys. A: Math. Theor., 42, 025210, 19 pp. (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Vartanian, “Trans-series asymptotics of solutions to the degenerate Painlevé III equation: A case study,” arXiv: 2010.11235.

  24. A. Zabrodin and A. Zotov, “Quantum Painlevé–Calogero correspondence,” J. Math. Phys., 53, 073507, 19 pp. (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Zabrodin and A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations,” Constr. Approx., 41, 385–423 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. V. Zotov and A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems,” Theoret. and Math. Phys., 177, 1281–1338 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. M. Levin, M. A. Olshanetsky, and A. V. Zotov, “Classification of isomonodromy problems on elliptic curves,” Russian Math. Surveys, 69, 35–118 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. P. Novikov, “The \(2{\times}2\) matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system,” Theoret. and Math. Phys., 161, 1485–1496 (2009).

    Article  MathSciNet  Google Scholar 

  29. D. P. Novikov and R. K. Romanovskii, and S. G. Sadovnichuk, Some New Methods of Finite-Gap Integration of Soliton Equations [in Russian], Nauka, Novosibirsk (2013).

    Google Scholar 

  30. D. P. Novikov and B. I. Suleimanov, “‘Quantization’ of an isomonodromic Hamiltonian Garnier system with two degrees of freedom,” Theoret. and Math. Phys., 187, 479–496 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. A. Pavlenko and B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system \(H^{2+1+1+1}\),” Ufa Math. J., 10, 92–102 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. A. Pavlenko and B. I. Suleimanov, “Explicit solutions of analogues of the time Schrödinger equations with Hamiltonian system H\(^{4+1}\),” Izvestiya Akademii Nauk. Seriya Fizicheskay, 84, 695–698 (2020).

    Google Scholar 

  33. V. A. Pavlenko and B. I. Suleimanov, “‘Quantizations’ of isomonodromic Hamilton system \(H^{\frac{7}{2}+1}\),” Ufa Math. J., 9, 97–107 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  34. B. I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its \(L\)\(A\) pairs,” Theoret. and Math. Phys., 156, 1280–1291 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. B. I. Suleimanov, “Quantization of certain autonomic reductions of Painlevé equations and the old quantum theory [in Russian],” in: International conference “Differential Equations and Related Topics” dedicated to the memory of I. G. Petrovskii (Moscow, 29 May–4 June, 2011), Moscow State Univ. Press, Moscow (2011), pp. 356–357.

    Google Scholar 

  36. B. I. Suleimanov, “The “quantum” linearization of the Painlevé equations as a component of their \(L,A\) pairs,” Ufimsk. Mat. Zh., 4, 127–135 (2012).

    Google Scholar 

  37. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with Morse potential,” Ufa Math. J., 8, 136–154 (2016).

    Article  MATH  Google Scholar 

  38. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom,” Algebra i Analiz, 33, 141–161 (2021).

    Google Scholar 

  39. H. Kawakami, A. Nakamura, and H. Sakai, “Degeneration scheme of 4-dimensional Painlevé-type equations,” arXiv: 1209.3836.

  40. H. Kawakami, A. Nakamura, and H. Sakai, “Toward a classification of four-dimensional Painlevé-type equations,” in: Algebraic and Geometric Aspects of Integrable Systems and Painlevé Equations (Boston, MA, 2012, Contemporary Mathematics, Vol. 593, A. Dzhamay, K. Maruno, and V. U. Pierce, eds.), AMS, Providence, RI (2013), pp. 143–161.

    MATH  Google Scholar 

  41. H. Kawamuko, “On the Garnier system of half-integer type in two variables,” Funkcial. Ekvac., 52, 181–201 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Kimura, “The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure,” Ann. Mat. Pura Appl. (IV), 155, 25–74 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Lund, “Classically solvable field theory model,” Ann. Phys., 115, 251–268 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. B. S. Getmanov, “Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions,” Theoret. and Math. Phys., 38, 124–130 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  45. B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case,” JETP Lett., 106, 400–405 (2017).

    Article  ADS  Google Scholar 

  46. D. Bilman and R. Buckingham, “Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation,” J. Nonlinear Sci., 29, 2185–2229 (2019); arXiv: 1807.09058.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. D. Bilman, L. Ling, and P. D. Miller, “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy,” Duke Math. J., 169, 671–760 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Bilman and P. D. Miller, “Extreme superposition: high-order fundamental rogue waves in the far-field regime,” arXiv: 2103.00337.

  49. A. V. Kitaev, “Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin,” SIGMA, 15, 46, 53 pp. (2019).

    MATH  Google Scholar 

  50. S. Li, P. D. Miller, “On the Maxwell–Bloch system in the sharp-line limit without solitons,” arXiv: 2105.13293.

  51. L. Ling and X. Zhang, “Large and infinite order solitons of the coupled nonlinear Schrödinger equation,” arXiv: 2103.15373.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pavlenko.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 212, pp. 340–353 https://doi.org/10.4213/tmf10285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, V.A. Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of \(H^{3+2}\) Hamiltonian systems. Theor Math Phys 212, 1181–1192 (2022). https://doi.org/10.1134/S0040577922090021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922090021

Keywords

Navigation