Skip to main content
Log in

Painlevé Representation of Tracy–Widom\({_\beta}\) Distribution for \({\beta}\) = 6

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In Rumanov (J Math Phys 56:013508, 2015), we found explicit Lax pairs for the soft edge of beta ensembles with even integer values of \({\beta}\). Using this general result, the case \({\beta = 6}\) is further considered here. This is the smallest even \({\beta}\), when the corresponding Lax pair and its relation to Painlevé II (PII) have not been known before, unlike cases \({\beta = 2}\) and 4. It turns out that again everything can be expressed in terms of the Hastings–McLeod solution of PII. In particular, a second order nonlinear ordinary differential equation (ODE) for the logarithmic derivative of Tracy–Widom distribution for \({\beta = 6}\) involving the PII function in the coefficients is found, which allows one to compute asymptotics for the distribution function. The ODE is a consequence of a linear system of three ODEs for which the local singularity analysis yields series solutions with exponents in the set 4/3, 1/3 and −2/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M., Clarkson P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Ablowitz M., Kruskal M., Segur H.: A note on Miura’s transformation. J. Math. Phys. 20, 999–1003 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ablowitz M., Segur H.: Asymptotic solutions of the Korteweg–de Vries equation. Stud. Appl. Math. 57, 13–44 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aganagic, M., Cheng, M., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. J. High Energy Phys. 11, 019 (2012). arXiv:1105.0630

  5. Alday, L., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219v2

  6. Baik, J., Ben Arous, G., Peché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005). arXiv:math/0403022

  7. Baik, J., Rains, E.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–541 (2000). arXiv:math/0003130

  8. Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable structure of conformal field theory I. Commun. Math. Phys. 177, 381–398 (1996). arXiv:hep-th/9412229

  9. Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable structure of conformal field theory II. Commun. Math. Phys. 190, 247–278 (1997). arXiv:hep-th/9604044

  10. Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable structure of conformal field theory III. Commun. Math. Phys. 200, 297–324 (1999). arXiv:hep-th/9805008

  11. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nulc. Phys. B. 241, 333–380 (1984)

  12. Bloemendal, A., Virag, B.: Limits of spiked random matrices I. Theory Probab. Relat. Fields. 156, 795–825 (2013). arXiv:1011.1877v2

  13. Borot, G., Eynard, B., Majumdar, S., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. 2011, P11024 (2011). arXiv:1009.1945v4

  14. Borot, G., Nadal, C.: Right tail expansion of Tracy–Widom beta laws. Rand. Matr. Theor. Appl. (2012). arXiv:1111.2761

  15. Desrosiers, P.: Dualities at all beta. Nucl. Phys. B 817, 224–251 (2009). arXiv:0801.3438

  16. Di Francesco, P., Gaudin, M., Itzykson, C., Lesage, F.: Laughlin’s wave functions, Coulomb gases and expansions of the discriminant. Int. J. Mod. Phys. A 9, 4257–4352 (1994). arXiv:hep-th/9401163

  17. Dotsenko Vl., Fateev V.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312–348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dubrovin, B., Kapaev, A.: On an Isomonodromy Deformation Equation without the Painlevé property. Russ. J. Math. Phys. 21, 9–35 (2014). arXiv:1301.7211

  19. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002). arXiv:math-ph/0206043

  20. Dyson F.: A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys 3, 1191–1198 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Edelman, A., Sutton, B.: From random matrices to stochastic operators. J. Stat. Phys. 127, 1121–1165 (2007). http://arxiv.org/abs/math-ph/0607038 math-ph/0607038

  22. Flaschka H., Newell A.: Monodromy and spectrum preserving deformations. Commun. Math. Phys 76, 65–116 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fokas A., Its A., Kapaev A., Novokshenov V.: Painlevé Transcendents: The Riemann–Hilbert Approach. American Mathematical Society, Providence (2006)

    Book  Google Scholar 

  24. Forrester P.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  25. Forrester, P.: Spectral density asymptotics for Gaussian and Laguerre \({\beta}\)-ensembles in the exponentially small region. J. Phys. A 45, 075206 (2012). arXiv:1111.1350.

  26. Forrester, P.: Asymptotics of spacing distributions 50 years later. Random Matrices, vol. 65. MSRI Publications, Cambridge University Press, Cambridge (2012). arXiv:1204.3225v3

  27. Hastings S., McLeod V.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Rational Mech. Anal. 73, 31–51 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Iwasaki K., Kimura H., Shimomura S., Yoshida M.: From Gauss to Painlevé: a modern theory of special functions. Viewveg, Braunschweig (1991)

    Book  MATH  Google Scholar 

  29. Jimbo, M., Miwa. T.: Monodromy preserving deformations of linear ordinary differential equations II. Physica D2 407 (1981)

  30. Kapaev A.: Global asymptotics of the second Painlevé transcendent. Phys. Lett. A. 167, 356–362 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  31. Krishnapur, M., Rider, B., Virag, B.: Universality of the stochastic Airy operator. arXiv:1306.4832

  32. Nagoya, H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52, 083509 (2011). arXiv:1109.1645

  33. Novokshenov, V.Yu.: Tronquée solutions of the Painlevé II equation. Theor. Math. Phys. 172, 1136–1146 (2012)

  34. Ramirez, J., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288, 887–906 (2009). arXiv:math/0803.2043v4

  35. Ramirez, J., Rider, B., Virag, B.: Beta ensembles, stochastic Airy spectrum and diffusion. J. Am. Math. Soc. 24, 919–944 (2011). arXiv:math/0607331

  36. Ramirez, J., Rider, B., Zeitouni, O.: Hard edge tail asymptotics. Electron. Commun. Probab. 16, 741–752 (2011). arXiv:math/1109.4121

  37. Rumanov, I.: Hard edge for beta-ensembles and Painlevé III. Intern. Math. Res. Notices 2014, 6576–6617 (2014). arXiv:1212.5333

  38. Rumanov, I.: Classical integrability for beta-ensembles and general Fokker–Planck equations. J. Math. Phys. 56, 013508 (2015). arXiv:1306.2117

  39. Rumanov, I.: Beta ensembles, quantum Painlevé equations and isomonodromy systems. Contemp. Math. (2014). arXiv:1408.3847

  40. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994). arXiv:hep-th/9211141

  41. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996). arXiv:solv-int/9509007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Rumanov.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumanov, I. Painlevé Representation of Tracy–Widom\({_\beta}\) Distribution for \({\beta}\) = 6. Commun. Math. Phys. 342, 843–868 (2016). https://doi.org/10.1007/s00220-015-2487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2487-5

Keywords

Navigation