Skip to main content
Log in

Special Polynomials Related to the Supersymmetric Eight-Vertex Model: A Summary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce and study symmetric polynomials, which as very special cases include polynomials related to the supersymmetric eight-vertex model, and other elliptic lattice models with \({\Delta=\pm 1/2}\). There is also a close relation to affine Lie algebra characters. After a natural change of variables, our polynomials satisfy a non-stationary Schrödinger equation with elliptic potential, which is related to the Knizhnik–Zamolodchikov–Bernard equation and to the canonical quantization of Painlevé VI. Moreover, specializations of our polynomials can be identified with tau functions of Painlevé VI, obtained from one of Picard’s algebraic solutions by acting with a four-dimensional lattice of Bäcklund transformations. In the present work, our results on these topics are summarized with a minimum of technical details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 23–337 (1972)

    Google Scholar 

  2. Baxter R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type model. Ann. Phys. 76, 25–47 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bazhanov V.V., Mangazeev V.V.: Eight-vertex model and non-stationary Lamé equation. J. Phys. A 38, L145–L153 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bazhanov V.V., Mangazeev V.V.: The eight-vertex model and Painlevé VI. J. Phys. A 39, 12235–12243 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Beccaria M., Hagendorf C.: A staggered fermion chain with supersymmetry on open intervals. J. Phys. A 45, 365201 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bernard D.: On the Wess–Zumino–Witten models on Riemann surfaces. Nucl. Phys. B 309, 145–174 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  7. Clarkson P.A.: Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations. Comput. Methods Funct. Theory 6, 329–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conte R., Dornic I.: The master Painlevé VI heat equation. C R Math. 352(10), 803–806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Darboux G.: Sur une équation linéaire. C R Acad. Sci. Paris 94, 1645–1648 (1882)

    MATH  Google Scholar 

  10. Etingof P.I., Kirillov A.A.: Representations of affine Lie algebras, parabolic differential equations, and Lamé functions. Duke Math. J. 74, 585–614 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eynard B., Ribault S.: Lax matrix solution of c = 1 conformal field theory. J. High Energy Phys. 2014, 59 (2014)

    Article  Google Scholar 

  12. Fateev V.A., Litvinov A.V., Neveu A., Onofri E.: A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks. J. Phys. A 42, 304011 (2009)

    Article  MathSciNet  Google Scholar 

  13. Fendley P., Hagendorf C.: Ground-state properties of a supersymmetric fermion chain. J. Stat. Mech. 2011, P02014 (2011)

    Article  Google Scholar 

  14. Fendley P., Saleur H.: N =  2 supersymmetry, Painlevé III and exact scaling functions in 2D polymers. Nucl. Phys. B 388, 609–626 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Filali G.: Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end. J. Geom. Phys. 61, 1789–1796 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gamayun O., Iorgov N., Lisovyy O.: Conformal field theory of Painlevé VI. J. High Energy Phys. 2012, 038 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hagendorf C.: Spin chains with dynamical lattice supersymmetry. J. Stat. Phys. 150, 609–657 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Hagendorf C., Fendley P.: The eight-vertex model and lattice supersymmetry. J. Stat. Phys. 146, 1122–1155 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Izergin A.G., Coker D.A., Korepin V.E.: Determinant formula for the six-vertex model. J. Phys. A 25, 4315–4334 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407–448 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kac V.: Infinite-Dimensional Lie Algebras. 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  22. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y.: Determinant formulas for the Toda and discrete Toda equations. Funkcial. Ekvac. 44, 291–307 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Kolb, S.: Radial part calculation for \({\widehat{\mathfrak{sl}}_2}\) and the Heun KZB-heat equation. Int. Math. Res. Notices (to appear)

  24. Kuperberg G.: Another proof of the alternating-sign matrix conjecture. Int. Math. Res. Notices 1996, 139–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Langmann E., Takemura K.: Source identity and kernel functions for Inozemtsev-type systems. J. Math. Phys. 53, 082105 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  26. Mangazeev V.V., Bazhanov V.V.: Eight-vertex model and Painlevé VI equation. II. Eigenvector results. J. Phys. A 43, 085206 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Masuda T.: On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46, 121–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazzocco M.: Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321, 157–195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagoya, H.: A Quantization of the Sixth Painlevé Equation, in Noncommutativity and Singularities, pp. 291–298, Math. Soc. Tokyo (2009)

  30. Nagoya H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52, 83509 (2011)

    Article  MathSciNet  Google Scholar 

  31. Noumi, M., Yamada, Y.: A new Lax pair for the sixth Painlevé equation associated with \({\widehat{\mathfrak{so}}(8)}\). In: Microlocal Analysis and Complex Fourier Analysis, pp. 238–252, World Sci. Publ (2002)

  32. Novikov D.P.: The Schlesinger system with 2 × 2 matrices and the Belavin–Polyakov–Zamolodchikov equation. Theor. Math. Phys. 161, 1485–1496 (2009). doi:10.1007/s11232-009-0135-y

    Article  MATH  Google Scholar 

  33. Okada S.: Enumeration of symmetry classes of alternating sign matrices and characters of classical groups. J. Algebraic Comb. 23, 43–69 (2006)

    Article  MATH  Google Scholar 

  34. Okamoto K.: Studies on the Painlevé equations. I. Sixth Painlevé equation \({P_{\rm VI}}\). Ann. Math. Pure. Appl. 146, 337–381 (1987)

    Article  MATH  Google Scholar 

  35. Picard E.: Mémoire sur la théorie des fonctions algébriques de deux variables. J. Math. Pure. Appl. V(4), 135–319 (1889)

    Google Scholar 

  36. Razumov A.V., Stroganov Yu.G.: A possible combinatorial point for the XYZ spin chain. Theor. Math. Phys. 164, 977–991 (2010)

    Article  MATH  Google Scholar 

  37. Rosengren H.: An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rosengren H.: The three-colour model with domain wall boundary conditions. Adv. Appl. Math. 46, 481–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. I. Behaviour at cusps. arXiv:1305.0666

  40. Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation. arXiv:1312.5879

  41. Rosengren, H.: Special polynomials related to the supersymmetric eight-vertex model. III. Painlevé VI equation. arXiv:1405.5318

  42. Rosengren H., Schlosser M.: Elliptic determinant evaluations and the Macdonald identities for affine root systems. Compos. Math. 142, 937–961 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stroganov Y.G.: The Izergin–Korepin determinant at a cube root of unity. Theor. Math. Phys. 146, 53–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Suleimanov B.I.: The Hamilton property of Painlevé equations and the method of isomonodromic deformations. Differ. Equ. 30, 726–732 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Suleimanov B.I.: “Quantum” linearization of Painlevé equations as a component of their L, A pairs. Ufa Math. J. 4, 127–136 (2012)

    Google Scholar 

  46. Tsuchiya O.: Determinant formula for the six-vertex model with reflecting end. J. Math. Phys. 39, 5946–5951 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Veselov A.P.: On Darboux–Treibich–Verdier potentials. Lett. Math. Phys. 96, 209–216 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Zabrodin A., Zotov A.: Quantum Painlevé–Calogero correspondence for Painlevé VI. J. Math. Phys. 53, 073508 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  49. Zinn-Justin, P.: Six-vertex, loop and tiling models: integrability and combinatorics. Habilitation Thesis, Paris (2008)

  50. Zinn-Justin, P.: Sum rule for the eight-vertex model on its combinatorial line. In: Symmetries, integrable systems and representations, pp. 599–637, Springer (2013). doi:10.1007/978-1-4471-4863-0_26

  51. Zotov A.V., Smirnov A.V.: Modifications of bundles, elliptic integrable systems, and related problems. Theor. Math. Phys. 177, 1281–1338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjalmar Rosengren.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosengren, H. Special Polynomials Related to the Supersymmetric Eight-Vertex Model: A Summary. Commun. Math. Phys. 340, 1143–1170 (2015). https://doi.org/10.1007/s00220-015-2439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2439-0

Keywords

Navigation