Skip to main content
Log in

The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Belavin-Polyakov-Zamolodchikov equation of the minimal model of conformal field theory with the central charge c = 1 for the Virasoro algebra is contained in a system of linear equations that generates the Schlesinger system with 2×2 tmatrices. This generalizes Suleimanov’s result on the Painlevé equations. We consider the properties of the solutions, which are expressible in terms of the Riemann theta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlesinger, J. für Math., 141, 96–145 (1912).

    MATH  Google Scholar 

  2. M. Sato, T. Miwa, and M. Jimbo, Publ. Res. Inst. Math. Sci., 15, 201–278 (1979).

    Article  MathSciNet  Google Scholar 

  3. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. A. B. Zamolodchikov and V. A. Fateev, Sov. J. Nucl. Phys., 43, 657–664 (1986).

    Google Scholar 

  5. N. Reshetikhin, Lett. Math. Phys., 26, 167–177 (1992); N. Reshetikhin and A. Varchenko, “Quasiclassical asymptotics of solutions of the KZ equations,” in: Geometry, Topology, and Physics (Conf. Proc. Lecture Notes Geom. Topology IV, S.-T. Yau, ed.), International Press, Cambridge, Mass. (1995), pp. 293–322; arXiv:hepth/9402126v3 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. J. Harnad, “Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations,” in: Symmetries and Integrability of Difference Equations (CRM Proc. Lect. Notes, Vol. 9, D. Levi, L. Vinet, and P. Winternitz, eds.), Providence, R. I. (1996), pp. 155–161; arXiv:hep-th/9406078v2 (1994).

  7. D. Korotkin and H. Samtleben, Comm. Math. Phys., 190, 411–457 (1997); arXiv:hep-th/9607095v2 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B, 247, 83–103 (1984); “Current algebra and two-dimensional Wess-Zumino model,” in: Instantons, Strings, and Conformal Field Theory [in Russian] (A. A. Belavin, ed.), Fizmatlit, Moscow (2002), pp. 311–331.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. E. K. Sklyanin, J. Soviet Math., 47, 2473–2488 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Stoyanovsky, “A relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations,” arXiv:math-ph/0012013v3 (2000).

  11. B. I. Suleimanov, “The Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations,” in: Asymptotic Properties of Solutions of Differential Equations [in Russian] (A. M. Il’in, ed.), Akad. Nauk SSSR Ural. Otdel., Bashkir. Nauchn. Tsentr, Ufa (1988), pp. 93–102; Differential Equations, 30, 726–732 (1994).

    Google Scholar 

  12. S. P. Balandin and B. I. Suleimanov, Differential Equations, 30, 1998–2000 (1995).

    MathSciNet  Google Scholar 

  13. B. I. Suleimanov, Theor. Math. Phys., 156, 1280–1291 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Fuchs, C. R. Acad. Sci. Paris, 141, 555–558 (1905).

    Google Scholar 

  15. D. P. Novikov, Theor. Math. Phys., 146, 295–303 (2006).

    Article  Google Scholar 

  16. A. V. Kitaev and D. A. Korotkin, Internat. Math. Res. Notices, 1998, 877–905 (1998); arXiv:math-ph/9810007v1 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Ya. Kazakov and S. Yu. Slavyanov, Theor. Math. Phys., 155, 722–733 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. V. Kitaev, St. Petersburg Math. J., 17, 169–206 (2006); arXiv:nlin.SI/0309078v3 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Riemann, J. Reine Angew. Math., 54, 115–155 (1857); 65, 161–172 (1866).

    MATH  Google Scholar 

  20. A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig (1903).

    MATH  Google Scholar 

  21. H. F. Baker, Abel’s Theorem and the Allied Theory Including the Theory of the Theta Functions, TheUniversity Press, Cambridge (1897).

    MATH  Google Scholar 

  22. D. Mumford, Tata Lectures on Theta (Progr. Math., Vol. 28), Birkhäuser, Boston (1983).

    MATH  Google Scholar 

  23. P. Deift, A. Its, A. Kapaev, and X. Zhou, “A note on the algebro-geometric integration of the Schlesinger equations and on the elliptic solutions of the Painlevé VI equation,” Preprint PDMI 20/1997, St. Petersburg Dept. Steklov Inst. Math., St. Petersburg (1997).

    Google Scholar 

  24. R. Garnier, Ann. Sci. École Norm. Sup. (3), 29, 1–126 (1912).

    MathSciNet  Google Scholar 

  25. B. Dubrovin and M. Mazzocco, Comm. Math. Phys., 271, 289–373 (2007); arXiv:math.DG/0311261v4 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Al. B. Zamolodchikov, Soviet Phys. JETP, 63, 1061–1066 (1986).

    MathSciNet  Google Scholar 

  27. Al. B. Zamolodchikov, Nucl. Phys. B, 285, 481–503 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  28. A. B. Zamolodchikov and Al. B. Zamolodchikov, Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems, Inst. Theor. Exper. Phys., TsNIIatominform, Moscow (1989–1990).

    Google Scholar 

  29. N. I. Akhiezer, Elements of the Theory of Elliptic Functions (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).

    MATH  Google Scholar 

  30. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).

    Google Scholar 

  31. Yu. V. Brezhnev, “On functions of Jacobi-Weierstrass (I) and equation of Painleve,” arXiv:0808.3486v1 [math.CA] (2008).

  32. B. A. Dubrovin, Russ. Math. Surveys, 36, 11–92 (1981).

    Article  MathSciNet  Google Scholar 

  33. N. H. Abel, in: Œuvres complètes (L. Sylow and S. Lie, eds.), Vol. 1, Editions Jacques Gabay, Sceaux (1992), pp. 40–60; in: Œuvres complètes, Vol. 2, pp. 145–211.

    Google Scholar 

  34. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  35. W. Lay, A. Ya. Kazakov, and S. Yu. Slavyanov, St. Petersburg Math. J., 8, 281–289 (1997); S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford (2000).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 161, No. 2, pp. 191–203, November, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, D.P. The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system. Theor Math Phys 161, 1485–1496 (2009). https://doi.org/10.1007/s11232-009-0135-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0135-y

Keywords

Navigation