Skip to main content
Log in

Neutral atmosphere near the icy surface of Jupiter’s moon Ganymede

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter’s moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon’s icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon’s gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzai, K., Kato, H., Hoshino, M., Tanaka, H., Itikawa, Y., Campbell, L., Brunger, M.J., Buckman, S.J., Cho, H., Blanco, F., Garcia, G., Limao-Vieira, P., and Ingrolfsson, O., Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O, Eur. Phys. J. D 2012, vol. 66, pp. 36–55.

    Article  ADS  Google Scholar 

  • Bagenal, F., Empirical model of the Io plasma torus: Voyager measurements, J. Geophys. Res., 1994, vol. 99, pp. 11043–11062.

    Article  ADS  Google Scholar 

  • Balakrishnan, N., Kharchenko, V., and Dalgarno, A., Slowing of energetic O(3P) atoms in collisions with N2, J. Geophys. Res., 1998, vol. 103, pp. 23393–23398.

    Article  ADS  Google Scholar 

  • Barth, C.A., Hord, C.W., Stewart, A.I.F., Pryor, W.R., Simmons, K.E., McClintock, W.E., Ajello, J.M., Naviaux, K.L., and Aiello, J.J., Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede, Geophys. Rev. Lett., 1997, vol. 24, pp. 2147–2150.

    Article  ADS  Google Scholar 

  • Burger, M.H., Wagner, R., Jaumann, R., and Cassidy, T.A., Effects of the external environment on icy satellites, Space Sci. Rev., 2010, vol. 153, pp. 347–372.

    Article  ADS  Google Scholar 

  • Carlson, R.W., A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto, Science, 1999, vol. 283, p. 821.

    ADS  Google Scholar 

  • Cassidy, T.A., Johnson, R.E., and Tucke, O.J., Trace constituents of Europa’s atmosphere, Icarus, 2009, vol. 201, pp. 182–190.

    Article  ADS  Google Scholar 

  • Cassidy, T., Coll, P., Raulin, F., Carlson, R.W., Johnson, R.E., Loeffler, M.J., Hand, K.P., and Baragiola, R.A., Radiolysis and photolysis of icy satellite surfaces: experiments and theory, Space Sci. Rev., 2010, vol. 153, pp. 297–314.

    Article  ADS  Google Scholar 

  • Cooper, J.F., Johnson, R.E., Mauk, B.H., and Gehrels, N., Energetic electron and ion irradiation of the icy Galilean satellites, Icarus, 2001, vol. 149, pp. 133–159.

    Article  ADS  Google Scholar 

  • Dols, V.J., Bagenal, F., Cassidy, T.A., Crary, F.J., and Delamere, P.A., Europa’s atmospheric neutral escape: importance of symmetrical O2 charge exchange, Icarus, 2016, vol. 264, pp. 387–397.

    Article  ADS  Google Scholar 

  • Feldman, P.D., McGrath, M.A., Strobel, D.F., Moos, H.W., Retherford, K.D., and Wolven, B.C., HST/STIS ultraviolet imaging of polar Aurora on Ganymede, Astrophys. J., 2000, vol. 535, pp. 1085–1090.

    Article  ADS  Google Scholar 

  • Frank, L.A., Paterson, W.R., and Ackerson, K.L., Outflow of hydrogen from Ganymede, Geophys. Rev. Lett., 1997, vol. 24, pp. 2151–2154.

    Article  ADS  Google Scholar 

  • Grasset, O., Dougherty, M.K., Coustenis, A., Bunce, E.J., Erd, C., Titov, D., Blanc, M., Coates, A., Drossart, P., Fletcher, L.N., Hussmann, H., Jaumann, R., Krupp, N., Lebreton, J.-P., Prieto-Ballesteros, O., Tortora, P., Tosi, F., and van Hoolst, T., JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterize the Jupiter system, Planet. Space Sci., 2013, vol. 78, pp. 1–21.

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., and Kennel, C.F., Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft, Nature, 1996, vol. 384, pp. 535–537.

    Article  ADS  Google Scholar 

  • Hall, D.T., Strobel, D.F., Feldman, P.D., McGrath, M.A., and Weaver, H.A., Detection of an oxygen atmosphere on Jupiter’s moon Europa, Nature, 1995, vol. 373, pp. 677–679.

    Article  ADS  Google Scholar 

  • Hall, D.T., Feldman, P.D., McGrath, M.A., and Strobel, D.F., The far-ultraviolet oxygen airglow of Europa and Ganymede, Astrophys. J., 1998, vol. 499, pp. 475–481.

    Article  ADS  Google Scholar 

  • Hansen, C.J., Shemansky, D.E., and Hendrix, A.R., Cassini UVIS observations of Europa’s oxygen atmosphere and torus, Icarus, 2004, vol. 176, pp. 305–315.

    Article  ADS  Google Scholar 

  • Huebner W.F., Keady J.J., Lyon S.P. Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 1992, vol. 195, pp. 1–294.

    Article  ADS  Google Scholar 

  • Ip, W.-H., Europa’s oxygen exosphere and its magnetospheric interaction, Icarus, 1996, vol. 120, pp. 317–325.

    Article  ADS  Google Scholar 

  • Ip, W.-H., Williams, D.J., McEntire, R.W., and Mauk, B., Ion sputtering and surface erosion at Europa, Geophys. Rev. Lett., 1998, vol. 25, pp. 829–832.

    Article  ADS  Google Scholar 

  • Itikawa, Y., Cross sections for electron collisions with oxygen molecules, J. Phys. Chem. Ref. Data, 2009, vol. 38, pp. 1–20.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Lanzerotti, L.J., Brown, W.L., and Armstrong, T.P., Erosion of Galilean satellites by magnetospheric particles, Science, 1981, vol. 212, pp. 1027–1030.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Lanzerotti, L.J., and Brown, W.L., Planetary applications of condensed gas sputtering, Nucl. Instrum. Methods, 1982, vol. 198, pp. 147–157.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Boring, J.W., Reimann, C.T., Barton, L.A., Sieveka, J.W., Garrett, J.W., Farmer, K.R., Brown, W.L., and Lanzerotti, L., Plasma ion-induced molecular ejection on the Galilean satellites: energies of the ejected molecules, Geophys. Rev. Lett., 1983, vol. 10, pp. 892–985.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Energetic Charged Particle Interaction with Atmospheres and Surfaces, New York: Springer-Verlag, 1990.

    Book  Google Scholar 

  • Johnson, R.E., Plasma-induced sputtering of an atmosphere, Space Sci. Rev., 1994, vol. 69, pp. 215–253.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Sputtering and desorption from icy surfaces, in Solar System Ices, Dordrecht: WKAP, Astrophys. and Space Sci. Library 1998, pp. 303–331.

    Chapter  Google Scholar 

  • Johnson, R.E., Surface chemistry in the Jovian magnetosphere radiation environment, in Chemical Dynamics in Extreme Environments, Dessler, R., Ed., Singapore: World Sci. Adv. Ser. Phys. Chem. 2001, pp. 390–419.

    Chapter  Google Scholar 

  • Johnson, R.E., Surface boundary layer atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy, Mendillo, M., Nagy, A., and Waite, J.H., Eds., AGU, Geophys. 2002, pp. 203–219.

    Chapter  Google Scholar 

  • Johnson, R.E., Quickenden, T.I., Cooper, P.D., McKinley, A.J., and Freeman, A.C., The production of oxidants in Europa’s surface, Astrobiology, 2003, vol. 3, pp. 823–850.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Carlson, R.W., Cooper, J.F., Paranicas, C., Moore, M.H., and Wong, M.C., Radiation effects on the surfaces of the Galilean satellites, in Jupiter: Satellites, Atmosphere, Magnetosphere, Bagenal, F., Ed., Cambridge: Cambridge Univ. Press, Cambridge Planetary Sci. 2004, vol. 1, pp. 485–512.

    Google Scholar 

  • Johnson, R.E., Smith, H.T., Tucker, O.J., Burger, M.H., Liu, M., and Tokar, R., The Enceladus and OH torii at Saturn, Astrophys. J., 2006, vol. 644, pp. L137–L139.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Combi, M.R., Fox, J.L., Ip, W-H., Leblanc, F., McGrath, M.A., Shematovich, V.I., Strobel, D.F., and Waite, J.H., Jr., Exospheres and atmospheric escape, Space Sci. Rev., 2008, vol. 139, pp. 355–397.

    Article  ADS  Google Scholar 

  • Kharchenko, V., Dalgarno, A., Zygelman, B., and Yee, J.-H., Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere, J. Geophys. Res., 2000, vol. 103, pp. 24899–24906.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Coroniti, F.V., Joy, S., Russell, C.T., Walker, R.J., Warnecke, J., Bennett, L., and Polanskey, C., Magnetic field and magnetosphere of Ganymede, Geophys. Rev. Lett., 1997, vol. 24, pp. 2155–2159.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., and Volwerk, M., The permanent and inductive moments of ganymede, Icarus, 2002, vol. 157, pp. 507–522.

    Article  ADS  Google Scholar 

  • Kliore, A.J., Hinson, D.P., Fraser, F.M., Nagy, A.F., and Cravens, T.E., The ionosphere of Europa from Galileo radio occultations, Science, 1997, vol. 227, pp. 355–358.

    Article  ADS  Google Scholar 

  • Kliore, A.J., Satellite atmospheres and magnetospheres, in Highlights of Astronomy, Anderson, J., Ed., Dordrecht: Kluwer, 1998, vol. 11, p. 1065.

    Chapter  Google Scholar 

  • Marconi, M.L., Dagum, L., and Smyth, W.H., Hybrid fluid/kinetic approach to planetary atmospheres: an example of an intermediate mass body, Astrophys. J., 1996, vol. 469, pp. 393–401.

    Article  ADS  Google Scholar 

  • Marconi, M.L., A kinetic model of Ganymede’s atmosphere, Icarus, 2007, vol. 190, pp. 155–174.

    Article  ADS  Google Scholar 

  • Marov, M.Ya., Shematovich, V.I., and Bisikalo, D.V., Non-equilibrium aeronomic processes. A kinetic approach to the mathematical models, Space Sci. Rev., 1996, vol. 76, nos. 1-2, pp. 1–200.

    Article  ADS  Google Scholar 

  • Mauk, B.H., Mitchell, D.G., Krimigis, S.M., Roelof, E.C., and Paranicas, C.P., Energetic neutral atoms from a trans-Europa gas torus at Jupiter, Nature, 2003, vol. 421, pp. 920–922.

    Article  ADS  Google Scholar 

  • McGrath, M.A., Lellouch, E., Strobel, D.F., Feldman, P.D., and Johnson, R.E., Satellite atmospheres, in Jupiter. The Planet, Satellites and Magnetosphere, Bagenal, F., Dowling, T.E., and McKinnon, W.B., Eds., Cambridge: Cambridge Univ. Press, Cambridge Planetary Science 2004, vol. 1, pp. 457–483.

    Google Scholar 

  • Nagy, A.F., Kim, J., Cravens, T.E., and Kliore, A.J., Hot corona at Europa, Geophys. Rev. Lett., 1998, vol. 22, pp. 4153–4155.

    Article  ADS  Google Scholar 

  • Orton, G.S., Spencer, J.R., Travi, L.D., Martin, T.Z., and Tamppari, L.K., Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites, Science, 1996, vol. 274, pp. 389–392.

    Article  ADS  Google Scholar 

  • Pappalardo, R.T., Senske, D.A., Prockter, L.M., Paczkowski, B., Vance, S., Goldstein, B., Magner, T., and Cooke, B., Science and reconnaissance from the Europa Clipper mission concept: exploring Europa’s habitability, LPI Contribut., 2015, no. 1832, p. 2673.

    ADS  Google Scholar 

  • Paranicas, C., Paterson, W.R., Cheng, A.F., Mauk, B.H., McEntire, R.W., Frank, L.A., and Williams, D.J., Energetic particle observations near Ganymede, J. Geophys. Res., 1999, vol. 404, pp. 17459–17469.

    Article  ADS  Google Scholar 

  • Paranicas, C., Ratliff, J.M., Mauk, B.H., Cohen, C., and Johnson, R.E., The ion environment near Europa and its role in surface energetics, Geophys. Rev. Lett., 2002, vol. 29, pp. 1810–1814.

    Article  Google Scholar 

  • Plainaki, C., Milillo, A., Mura, A., Orsini, S., Massetti, S., and Cassidy, T., The role of sputtering and radiolysis in the generation of Europa exosphere, Icarus, 2013, vol. 218, pp. 956–966.

    Article  ADS  Google Scholar 

  • Plainaki, C., Milillo, A., Massetti, S., Mura, A., Jia, X., Orsini, S., Mangano, V., De Angelis, E., and Rispoli, R., The H2O and O2 exospheres of Ganymede: the result of a complex interaction between the Jovian magnetospheric ions and the icy Moon, Icarus, 2015, vol. 245, pp. 306–319.

    Article  ADS  Google Scholar 

  • Purves, N.G. and Pilcher, C.B., Thermal migration of water on the Galilean satellites, Icarus, 1980, vol. 43, pp. 51–55.

    Article  ADS  Google Scholar 

  • Richards, P.G., Fenelly, J.A., and Torr, D.G., EUVAC: a solar flux model for aeronomic calculations, J. Geophys. Res., 1994, vol. 99, pp. 8981–8990.

    Article  ADS  Google Scholar 

  • Roth, L., Saur, J., Retherford, K.D., Strobel, D.F., Feldman, P.D., McGrath, M.A., and Nimmo, F., Transient water vapor at Europa’s south pole, Science, 2014, vol. 343, pp. 171–174.

    Article  ADS  Google Scholar 

  • Saur, J., Strobel, D.F., and Neubauer, F.M., Interaction of the Jovian magnetosphere with Europa: constraints on the atmosphere, J. Geophys. Res., 1998, vol. 103, pp. 19947–19962.

    Article  ADS  Google Scholar 

  • Schreier, R., Eviator, A., Vasiliunas, V.M., and Richardson, J.D., Modeling the Europa plasma torus, J. Geophys. Res., 1993, vol. 98, pp. 21231–21242.

    Article  ADS  Google Scholar 

  • Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-T., and Tripp, T.M., Detection of the hydroxyl radical in the Saturn magnetosphere, Nature, 1992, vol. 363, p. 329.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Bisikalo, D.V., and Gerard, J.-C., A kinetic model of the formation of the hot oxygen geocorona. I. Quiet geomagnetic conditions, J. Geophys. Res., 1994, vol. 99, pp. 217–226.

    Article  Google Scholar 

  • Shematovich, V.I., Gerard, J.-C., Bisikalo, D.V., and Hubert, B., Thermalization of O(1D) atoms in the thermosphere, J. Geophys. Res., 1999, vol. 104, pp. 4287–4295.

    Article  ADS  Google Scholar 

  • Shematovich, V.I. and Johnson, R.E., Near-surface oxygen atmosphere at Europa, Adv. Space Res., 2001, vol. 27, pp. 1881–1888.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Johnson, R.E., Michael, M., and Luhmann, J.G., Nitrogen loss from Titan, J. Geophys. Res., 2003, vol. 108, pp. 5087–5099.

    Article  Google Scholar 

  • Shematovich, V.I., Stochastic models of hot planetary and satellite coronas, Solar Syst. Res., 2004, vol. 38, no. 1, pp. 28–38.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Johnson, R.E., Cooper, J.F., and Wong, M.C., Surface-bounded atmosphere of Europa, Icarus, 2005, vol. 173, pp. 480–498.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Stochastic models of hot planetary and satellite coronas: atomic oxygen in Europa’s corona, Solar Syst. Res., 2006, vol. 40, no. 3, pp. 195–212.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Ionization chemistry in H2O-dominated atmospheres of icy moons, Solar Syst. Res., 2008, vol. 42, no. 6, pp. 473–487.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Gas envelopes of ice satellites, Mekhan., Upr. Inf., 2015, vol. 7, no. 3(56), pp. 270–310.

    Google Scholar 

  • Shi, M., Baragiola, R.A., Grosjean, D.E., Johnson, R.E., Jurac, S., and Schou, J., Sputtering of water ice surfaces and the production of extended neutral atmospheres, J. Geophys. Res., 1995, vol. 100, pp. 26387–26395.

    Article  ADS  Google Scholar 

  • Smith, R.S. and Kay, B.D., Adsorption, desorption and crystallization kinetics in nanoscale water films, Recent Res. Devel. Phys. Chem., 1997, vol. 1, pp. 209–219.

    Google Scholar 

  • Smyth, W.H. and Marconi, M.L., Europa’s atmosphere, gas tori, and magnetospheric implications, Icarus, 2006, vol. 181, pp. 510–526.

    Article  ADS  Google Scholar 

  • Spencer, J.R., Tamppari, L.K., Martin, T.Z., and Travis, L.D., Temperatures on Europa from Galileo PPR: nighttime thermal anomalies, Science, 1999, vol. 284, pp. 1514–1516.

    Article  ADS  Google Scholar 

  • Torr, M.R., Torr, D.G., and Hinteregger, H.E., Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21, J. Geophys. Res., 1980, vol. 85, pp. 6063–6068.

    Article  ADS  Google Scholar 

  • Turc, L., Leclercq, L., Leblanc, F., Modolo, R., and Chaufray, J.-Y., Modelling Ganymede’s neutral environment: a 3D test-particle simulation, Icarus, 2014, vol. 229, pp. 157–169.

    Article  ADS  Google Scholar 

  • Westley, M.S., Baragiola, R.A., Johnson, R.E., and Baratta, G.A., Ultraviolet desorption from water ice, Planet. Space Sci., 1995, vol. 43, pp. 1311–1315.

    Article  ADS  Google Scholar 

  • Wong, M.C., Marconi, M.L., and Johnson, R.E., Model calculations for Ganymede’s atmosphere, Proc. AGU Spring Meeting, Boston, MA, 1999, abstract P32B-09.

    Google Scholar 

  • Yung, Y.I. and McElroy, M.B., Stability of an oxygen atmosphere on Ganymede, Icarus, 1977, vol. 30, pp. 97–103.

    Article  ADS  Google Scholar 

  • Zhang, P., Kharchenko, V., Jamieson, M.J., and Dalgarno, A., Energy relaxation in collisions of hydrogen and deuterium with oxygen atoms, J. Geophys. Res., 2009, vol. 114, p. A07101.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shematovich.

Additional information

Original Russian Text © V.I. Shematovich, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 4, pp. 280–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shematovich, V.I. Neutral atmosphere near the icy surface of Jupiter’s moon Ganymede. Sol Syst Res 50, 262–280 (2016). https://doi.org/10.1134/S0038094616040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094616040067

Keywords

Navigation