Skip to main content
Log in

Nonequilibrium aeronomic processes

A kinetic approach to the mathematical modeling

  • Published:
Space Science Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aamodt, R.E., Case K.H.: 1962, ‘Density in a simple model of the exosphere’, Phys. Fluids 5, 1019.

    Google Scholar 

  • A'Hearn, M.F., and Festou M.C.: 1990, ‘The neutral coma’, in W.F. Huebner (Ed.), Physics and chemistry of comets, Springer-Werlag, Heidelberg, 69.

    Google Scholar 

  • Akasofu, S.-I., and Chapman S.: 1972, Solar terrestrial physics, Oxford University Press, London.

    Google Scholar 

  • Alekseev, B.I.: 1982, Mathematical kinetics of reactive gases, Nauka, Moscow, (in russian).

    Google Scholar 

  • Ashihara, O.: 1978, ‘Photoelectron fluxes in cometary atmospheres’, Icarus, 35, 369.

    Google Scholar 

  • Banks, P.M., and Kockarts G.: 1973, Aeronomy, Academic Press, New York.

    Google Scholar 

  • Barghouthi, I.A., Barakat A.R., and Schunk R.W.: 1993, ‘Monte-Carlo study of the transition region in the polar wind: an improved collision model’, J. Geophys. Res. 98, 17583.

    Google Scholar 

  • Barlier, F., and Berger C.: 1983, ‘A point of view on semiempirical thermospheric models’, Planet. Space. Sci. 31, 945.

    Google Scholar 

  • Barlier, F., Berger C., Falin J.L., and Thuillier G.: 1978, ‘A thermospheric model based on sattelite drag data’, Ann. Geophys 34, 9.

    Google Scholar 

  • Barth, C.A.: 1964, ‘Rocket measurements of the nitric oxide dayglow’, J. Geophys. Res. 69, 3301.

    Google Scholar 

  • Barth, C.A.: 1989, ‘Reference models for thermospheric NO’, Adv. Space Res. 10, 103.

    Google Scholar 

  • Barth, C.A.: 1992, ‘Reference models for thermospheric NO’, Planet. Space Sci. 40, 315.

    Google Scholar 

  • Barth, C.A., Tobiska W.K., Siskind D.E., and Cleary D.D.: 1988, ‘Solar-terrestrial coupling: low-latitude thermospheric nitric oxide’, Geophys. Res. Lett. 15, 92.

    Google Scholar 

  • Belotsekovskiy, O.M.: 1978, ‘Computational experiment’, in Direct numerical simulation of gas flows (Numerical experiment in gas dynamics), Computing Center, Moscow, 6, (in russian).

    Google Scholar 

  • Belotserkovskiy, O.M., and Yanitskiy V.E.: 1975, ‘Statistical particle-in-cell method for solving of rarefied gas dynamics problems’, J. Comput. Math. and Math. Phys. 15, 1195, (in russian).

    Google Scholar 

  • Bertaux, J.L.: 1976, ‘Observations of hydrogen in the upper atmosphere’, J. Atmos. Terr. Phys. 38, 821.

    Google Scholar 

  • Bird, G.A.: 1976, Molecular gas dynamics, Clarendon Press, Oxford.

    Google Scholar 

  • Blochintsev, D.A.: 1961, The fundamentals of quantum mechanics, High School Publ., Moscow, (in russian).

    Google Scholar 

  • Blum, P., Harris I., and Priester W.: 1972, ‘The physics of the neutral upper atmosphere’, in CIRA-72, Academic Verlag, Berlin, 221.

    Google Scholar 

  • Bisikalo, D.V., and Shematovich V.I.: 1987, ‘Kinetic model of cometary inner coma’, Astron. Tsirc. 1507, 1, (in russian).

    Google Scholar 

  • Bisikalo, D.V., and Shematovich V.I.: 1988, ‘Numerical modeling of nonequilibrium rarefied gas flow in inner coma of comet’, Astron. Herald 21, 41, (in russian).

    Google Scholar 

  • Bisikalo, D.V., and Shematovich V.I.: 1989, ‘Variation of the thermal dissipation rate in the Earth's upper atmosphere’, in Our changing atmosphere., Univ. de Liege, 267.

  • Bisikalo, D.V., and Shematovich V.I.: 1991, ‘Three-dimensional kinetic simulation of sporadic disturbances in upper atmosphere’, in Scientific Reports of Institute of Astronomy, 69, 103, Moscow, (in russian).

    Google Scholar 

  • Bisikalo, D.V., and Strel'nitskij V.S.: 1985, ‘Ice halo of comet and temperature of inner coma’, Letters to Astron. J. 11, 475, (in russian).

    Google Scholar 

  • Bisikalo, D.V., Marov M.Ya., Shematovich V.I., and Strelnitsky V.S.: 1989, ‘The flow of the subliming gas in the near-nuclear (Knudsen) layer of the cometary coma’, Adv. Space Res. 9, 53.

    Google Scholar 

  • Bisikalo, D.V., Shematovich V.I., and Gerard J.C.: 1994, ‘Kinetic model of the formation of the hot oxygen geocorona. II. Influence of O+ ion precipitation’, J. Geophys. Res., (in press).

  • Bockelee-Morvan D., and Crovisier J.: 1987, ‘The role of water in the thermal balance of the coma’, in Proceedings of Symposium on the Diversity and Similarity of Comets, ESA SP-278, Paris, 235.

  • Breig, L.E.: 1987, ‘Thermospheric ion and neutral composition and chemistry’, Rev. Geophys. 25, 455.

    Google Scholar 

  • Brinkmann, R.T.: 1971, ‘More comments on the validity of Jeans escape rate’, Planet. Space Sci 19, 791.

    Google Scholar 

  • Cameron A.G.W.: 1983, ‘Origin of the atmospheres of the terrestrial planets’, Icarus 56, 195.

    Google Scholar 

  • Chamberlain, J.W.: 1978, Theory of planetary atmospheres, Academic Press, New York.

    Google Scholar 

  • Chamberlain, J.W., and Smith G.R.: 1971, ‘Comments on the rate of evaporation of a non-maxwellian atmosphere’, Planet.Space Sci. 19, 675.

    Google Scholar 

  • Chandra S., and Sinha A.K.: 1973, ‘The diurnal heat budget of the thermosphere’, Planet. Space Sci. 21, 593.

    Google Scholar 

  • Claydon, C.R., Segal G.A., and Taylor H.C.: 1971, ‘Theoretical interpretation of the optical and electron scattering spectra of H2O’, J. Chem. Phys. 54, 3799.

    Google Scholar 

  • Cleary, D.D.: 1986, ‘Daytime high-latitude rocket observations of NO γ, δ and ε bands’, J. Geophys. Res. 91, 11337.

    Google Scholar 

  • Conway, R.A.: 1988, ‘Photoabsorption and photoionisation cross section of O, O2 and N2 for photoelectron production calculations: a compilation of recent laboratory measurements’, Report 6155, Naval Research Laboratory, Washington.

    Google Scholar 

  • Cravens, T.E., and Stewart A.I.: 1978, ‘Global morphology of nitric oxide in the lower E region’, J. Geophys. Res. 83, 2446.

    CAS  Google Scholar 

  • Cravens, T.E., Gerard J.C., LeCompte M., Stewart A.I., and Rusch D.W.: 1985, ‘The global distribution of nitric oxide in the thermosphere as determined by the Atmosphere Explorer D satellite’, J. Geophys. Res. 90, 9862.

    Google Scholar 

  • Crifo, J.F.: 1986, ‘Comets as large dirty snowballs sublimating in interplanetary space: A review of gasdynamics models’, in Rarefied Gas Dynamics, Springer Verlag, 2, 229.

  • Crovisier, J.: 1984, ‘The water molecule in comets: Fluorescence mechanisms and thermodynamics of the inner coma’, Astron. Astrophys. 130, 361.

    Google Scholar 

  • Crutzen, P.J., Isaksen I., and Reid G.C.: 1975, ‘Solar proton events: stratospheric sources of nitric oxide’, Science 189, 457.

    Google Scholar 

  • DeMore, W.B., Sander S.P., Golden D.M., Molina M.T., Hampson R.F., Kurylo M.J., Howard C.J., and Ravishankara A.R.: 1990, ‘Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 9’, JPL publication 90–1, Pasadena, CA.

    Google Scholar 

  • Dickinson, R.E., Ridley E.C., and Roble R.G.: 1981, ‘A three-dimensional general circulation model of the thermosphere’, J. Geophys. Res. 86, 1499.

    Google Scholar 

  • Dickinson, R.E., Ridley E.C., and Roble R.G.: 1984, ‘Thermospheric general circulation with coupled dynamics and composition’, J. Atmos. Sci. 41, 205.

    Google Scholar 

  • Eddi, J.A.: 1977, ‘Integral flux of solar energy. Solar spectrum’, in O.R. White (Ed.), The solar output and its variation, Colorado Univ. Press, Boulder.

    Google Scholar 

  • Fahr, H.J., and Shizgal B.: 1983, ‘Modern exospheric theories and their observational relevance’, Rev. Geophys. 21, 75.

    Google Scholar 

  • Feldman, P.D.: 1983, ‘Ultraviolet spectroscopy and the composition of cometary ice’, Science 219, 347.

    Google Scholar 

  • Fell, C., Steinfeld J.I., and Miller S.: 1990, ‘Quenching of N(2 D) by O(3 P)’, J. Chem. Phys. 92, 4768.

    Google Scholar 

  • Feller, W.: 1970, An introduction to probability theory and its applications, (third ed.), Wiley, New York.

    Google Scholar 

  • Ferziger, J., and Kaper H.: 1972, Mathematical theory of transport processes in gases, North-Holland, Amsterdam.

    Google Scholar 

  • Fesen, C.G., Rusch D.W., and Gerard J.C.: 1990, ‘The latitudinal gradient of NO’, J. Geophys. Res. 95, 19053.

    Google Scholar 

  • Fox, J.L., and Dalgarno A.: 1980, ‘The production of nitrogen atoms on Mars and their escape’, Planet. Space Sci. 28, 41.

    Google Scholar 

  • Frederick, J., and Rusch D.W.: 1977, ‘On the chemistry of metastable atomic nitrogen in the F region deduced from simultaneous satellite measurements of the 5200-A airglow and atmospheric composition’, J. Geophys. Res. 82, 3509.

    Google Scholar 

  • Fuller-Rowell, T.J.: 1987, ‘Numerical investigations of thermospheric-ionospheric coupling in the polar regions’, Physica Scripta T18, 229.

    Google Scholar 

  • Fuller-Rowell, T.J.: 1993, ‘Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere’, J. Geophys. Res. 98, 1559.

    Google Scholar 

  • Fuller-Rowell, T.J., and Rees D.: 1980, ‘A three-dimensional time-dependent global model of the thermosphere’, J. Atmos. Sci. 37, 2545.

    Google Scholar 

  • Fuller-Rowell, T.J., and Rees D.: 1983, ‘Derivation of conservation equation for two-constituent gas within a three-dimensional time-dependent model of the thermosphere’, Planet. Space Sci. 31, 1209.

    Google Scholar 

  • Fuller-Rowell, T.J., Rees D., Quegan S., Bailey G.J., and Moffet R.J.: 1984, ‘The effect of realistic conductivities on the high-latitude neutral thermospheric circulation’, Planet. Space Sci. 32, 469.

    Google Scholar 

  • Gerard, J.C.: 1983, ‘A review of optical F-region processes in the polar atmosphere’, in Deehr C.S., Holtet J.A. (Eds.) Exploration of the Polar Upper Atmosphere, D.Reidel Publ., Dordrecht, 175.

    Google Scholar 

  • Gerard, J.C.: 1992, ‘Thermospheric odd nitrogen’, Planet. Space Sci. 40, 337.

    Google Scholar 

  • Gerard, J.C., and Barth C.A.: 1977, ‘High-latitude nitric oxide in the lower thermosphere’, J. Geophys. Res. 82, 674.

    Google Scholar 

  • Gerard, J.C., and Noel C.E.: 1986, ‘AE-D measurements of the geomagnetic latitudinal distribution and contamination by N+(5S) emission’, J. Geophys. Res. 91, 10136.

    Google Scholar 

  • Gerard, J.C., and Roble R.G.: 1986, ‘The role of nitric oxide on the zonally averaged structure of the thermosphere: Solstice conditions for solar cycle minimum’, Planet. Space Sci. 34, 131.

    Google Scholar 

  • Gerard, J.C., and Roble R.G.: 1988, ‘The role of nitric oxide on the zonally averaged structure of the thermosphere: solstice conditions for solar cycle maximum’, Planet. Space Sci. 36, 271.

    Google Scholar 

  • Gerard, J.C., and Taieb C.: 1986, ‘The E-region electron density diurnal asymmetry at Saint-Santin: observations and role of nitric oxide’, J. Atmos. Terr. Phys. 48, 471.

    Google Scholar 

  • Gerard, J.C., Fesen C.G., and Rusch D.W.: 1990, ‘Solar cycle variation of thermospheric nitric oxide at solstice’, J. Geophys. Res. 95, 12235.

    Google Scholar 

  • Gerard, J.C., Shematovich V.I., and Bisikalo D.V.: 1991, ‘Non thermal nitrogen atoms in the Earth's thermosphere 2. A source of ntric oxide’, Geophys. Res. Lett. 18, 1695.

    Google Scholar 

  • Gerard, J.C., Shematovich V.I., and Bisikalo D.V.: 1993a, ‘The effect of hot N(4S) atoms on the NO solar cycle variation in the lower thermosphere’, J. Geophys. Res. 98, 11581.

    Google Scholar 

  • Gerard, J.C., Shematovich V.I., and Bisikalo D.V.: 1993b, ‘The role of fast N(4S) atoms and energetic photoelectrons on the NO thermospheric distribution’, in Geophysical Monographs, Academic Press, New York, (in Press).

    Google Scholar 

  • Gigulev, V.N.: 1971, ‘Investigation of Bogolubov equation chain for strongly correlative systems’, Theor. Math. Phys. 7, 106, (in russian).

    Google Scholar 

  • Gombosi, T.I., Horanyi M., Kecskemety K., Cravens T.E., and Nagy A.F.: 1983, ‘Charge exchange in solar wind-cometary interactions’, Astrophys. J. 268, 889.

    Google Scholar 

  • Gombosi, T., Nagy A.F., and Cravens T.: 1986, ‘Dust and neutral gas modelling of inner atmospheres of comets’, Rev. Geophys. 24, 667.

    Google Scholar 

  • Gordiets, B.F., Kulikov Yu.N., Markov M.N., and Marov M.Ya.: 1982, ‘Numerical modeling of the thermospheric heat budget’, J. Geophys. Res. 87, 4504.

    Google Scholar 

  • Green, A.E.S., and Stolarski R.S.: 1972, ‘Analytic models of electron impact excitation cross sections’, J. Atmos. Terr. Phys. 34, 1703.

    Google Scholar 

  • Grewing, M., Praderie F., and Reinhard R. (Eds.): 1988, Exploration of Halley's comet, Springer-Verlag, Berlin.

    Google Scholar 

  • Grim, G.: 1969, Spectroscopy of plasma, Atomizdat, Moscow, (in russian).

    Google Scholar 

  • Grunbaum, F.A.: 1971, ‘Propagation of chaos for the Boltzmann equation’, Arch. Ration. Mech. and Anal. 42, 323.

    Google Scholar 

  • Hays, P.B., Killeen T.L., Spencer N.W., Wharton I.E., Roble R.G., Emery B.E., Fuller-Rowell T.J., Rees D., Frank L.A., and Craven J.D.: 1984, ‘Observations of the dynamics of the polar thermosphere’, J. Geophys. Res. 89, 5597.

    Google Scholar 

  • Hedin, A.H.: 1987, ‘MSIS-86 thermospheric model’, J. Geophys. Res. 92, 4649.

    Google Scholar 

  • Hedin, A.E.: 1988, ‘A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83’, J. Geophys. Res. 88, 10170.

    Google Scholar 

  • Hedin, A.E.: 1989, ‘Hot oxygen geocorona as inferred from neutral exospheric models and mass spectrometer measurements’, J. Geophys. Res. 94, 5523.

    Google Scholar 

  • Hedin, A.E.: 1991, ‘Extension of the MSIS thermosphere model into the middle and lower atmosphere’, J. Geophys. Res. 96, 1159.

    Google Scholar 

  • Hinteregger, H.E., Fukui K., and Gibson B.R.: 1981, ‘Observational, reference and model data on solar EUV, from measurements on AE-E’, Geophys. Res. Lett. 8, 1147.

    Google Scholar 

  • Hirschfelder, J.O., Curtiss C.F., and Bird R.B.: 1954, The molecular theory of gases and liquids, John Willey, New York.

    Google Scholar 

  • Hochstim A.R. (Ed.): 1969, Kinetic processes in gases and plasmas, Academic Press, New York.

    Google Scholar 

  • Hoffman, R.A.: 1988, ‘The magnetosphere, ionosphere and thermosphere as a system: DE 5 years later’, Rev. Geophys. 26, 209.

    Google Scholar 

  • Hodges, R.R., Breig E.L.: 1993, ‘Charge transfer and momentum exchange in exospheric D — H + and H — D + collisions’, J. Geophys. Res. 98, 1581.

    Google Scholar 

  • Hudson, R.D.: 1971, ‘Critical review of UV photoabsorption cross sections for molecules of astrophysical and aeronomical interest’, Rev. Geophys. Sp. Phys. 9, 303.

    Google Scholar 

  • Huebner, W.F. (Ed): 1990, Physics and chemistry of comets, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Huebner, W.F., and Fikani M.M.: 1982, ‘Comet Halley, parameter study I’, Los Alomos National Laboratory report LA-9346-MS.

  • Huebner, W.F., and Keady J.J.: 1983, ‘Energy balance and photochemical processes in the inner coma’, in Cometary Exploration, MTA, Budapest, I, 165.

  • Huebner, W.F., Giguere P.T., and Slattery W.E.: 1983, ‘Photochemical processes in the inner coma’, in Cometary Exploration, MTA, Budapest, I, 496.

  • Huebner, W.F., Keady J.J., and Lyon S.P.: 1992, ‘Solar photo rates for planetary atmospheres and atmospheric pollutants’, Astrophys. Space Sci. 195, 1.

    Google Scholar 

  • Hunten, D.M.: 1973, ‘The escape of light gases from planetary atmospheres’, J. Atmos. Sci. 30, 1481.

    Google Scholar 

  • Hunten, D.M.: 1982, ‘Thermal and nonthermal escape mechanisms for terrestrial bodies’, Planet. Space Sci. 30, 773.

    Google Scholar 

  • Hunten, D.M., and Donahue T.M.: 1976, ‘Hydrogen loss from the terrestrial planet’, Rev. Earth Planet. Sci. 4, 265.

    Google Scholar 

  • Huntress, W.T. Jr., McEwan H.J., Karpas Z., and Anicich V.G.: 1980, ‘Laboratory study of some of the major ion — molecular reactions occuring in cometary comae’, Astrophys. J. Suppl. 44, 481.

    Google Scholar 

  • Ip, W.-H.: 1980, ‘Cometary atmospheres. I. Solar wind modification of outer ion coma’, Astron. Astrophys. 92, 95.

    Google Scholar 

  • Ip, W.-H., Huntress W.T.: 1983, ‘An outher coma model in two dimensions’, in Cometary Exploration, MTA, Budapest, I, 249.

  • Ip W.H., and Axford I.W.: 1990, ‘The plasma’, in W.F. Huebner (Ed.), Physics and chemistry of comets, Springer-Werlag, Heidelberg, 177.

    Google Scholar 

  • Ishimoto, M., Torr M.R., Richards P.G., and Torr D.G.: 1986, ‘The role of energetic O+ precipitation in a mid-latitude aurora’, J. Geophys. Res. 91, 5793.

    Google Scholar 

  • Ishimoto M., Romick G.J., and Meng C.-I.: 1992, ‘Energy distribution of energetic O + precipitation into the atmosphere’, J. Geophys. Res. 97, 8619.

    Google Scholar 

  • Ivanov, M.S., Cheremissine F.G., and Yanitskiy V.E.: 1987, ‘Statistical modeling of kinetic equations with physical and chemical processes’, in Modeling in Mechanics, Novosibirsk, 1, 62, (in russian).

    Google Scholar 

  • Ivanov, M.S., and Rogazinskiy S.V.: 1988, Direct statistical simulation method in rarefied gas dynamics, Computing Center, Novosibirsk, (in russian).

    Google Scholar 

  • Ivanov-Cholodny, G.S., and Nusinov A.A.: 1987, ‘Short-wave solar radiation and its effect on upper atmosphere and ionosphere’, in Highligths of Science and Technics, VINITI, Moscow, 26, 80, (in russian).

  • Ivanovskiy, A.I., Repnev A.P., and Schvidkovskiy E.G.: 1967, Kinetic theory of the upper atmosphere, Hidrometeoizdat, Leningrad, (in russian).

    Google Scholar 

  • Izakov, M.N.,: 1967, ‘The structure of neutral upper atmosphere’, Space Sci. Rev. 7, 579, (in russian).

    Google Scholar 

  • Jacchia, L.G.: 1977, ‘Thermospheric temperature, density, and composition: new models’, SAO Sp. Rep. 375, Cambridge, Massachussets.

    Google Scholar 

  • Jackman, C.H., Garvey R.H., and Green A.E.S.: 1977, ‘Electron impact on atmospheric gases I. Updated cross sections’, J. Geophys. Res. 82, 5081.

    Google Scholar 

  • Jeans, J.H.: 1923, The dynamical theory of gases, Cambridge Univ. Press, New York.

    Google Scholar 

  • Kac, M.: 1963, Probability and related problems in physics, Mir, Moscow, (in russian).

    Google Scholar 

  • Kac, M.: 1973, ‘Some probabilistic aspects of the Boltzmann equation’, in The Boltzmann equation theory and application, Springer, New York, 379.

    Google Scholar 

  • Killeen, T.L., and Roble R.G.: 1988, ‘Thermospheric dynamics: contributions from the first five years of DE program’, Rev. Geophys. 26, 329.

    Google Scholar 

  • Kirby, K., Constantinides E.R., Babeu S., Oppenheimer M., and Victor G.A.: 1979, ‘Photoionization and photoabsorption cross sections of thermospheric species: He, O, N2 and O2’, At. Data Nucl. Data Tables 23, 63.

    Google Scholar 

  • Klimontovich, Yu.L.: 1980, Kinetic theory of electromagnetic processes, Nauka, Moscow, (in russian).

    Google Scholar 

  • Knacke, O., and Stransky N.N.: 1959, ‘The mechanism of evaporation’, Advances in Physics 68, 261, (in russian).

    Google Scholar 

  • Kockarts, G.: 1980, ‘Nitric oxide cooling in the thermosphere’, Geophys. Res. Lett. 7, 137.

    Google Scholar 

  • Kolmogorov, A.N.: 1938, ‘Analytical methods in probability theory’, Advances in Mathematics 5, 51, (in russian).

    Google Scholar 

  • Kohnlein, W.: 1980, ‘A model of thermospheric temperature and composition’, Planet. Space Sci. 28, 225.

    Google Scholar 

  • Korolev, A.E., and Yanitskiy V.E.: 1983, ‘Direct stochastic simulation of collisional relaxation in gas mixtures’, J. Comp. Math. and Math. Phys. 23, 674, (in russian).

    Google Scholar 

  • Korolev, A.E., and Yanitskiy V.E.: 1985, ‘Development of statistical particle-in-cell method for relaxation problems of chemically reacting gas mixtures’, J. Comp. Math. and Math. Phys. 25, 431, (in russian).

    Google Scholar 

  • Kozyra, J.V., Cravens T.E., and Nagy A.F.: 1982, ‘Energetic O+ precipitation’, J. Geophys. Res. 87, 2481.

    Google Scholar 

  • Krasnopolskiy, V.A.: 1987, Physics of emissions in planetary and cometary atmospheres, Nauka, Moscow, (in russian).

    Google Scholar 

  • Krinberg, I.A.: 1978, Kinetics of electrons in the Earth's ionosphere and plasmosphere, Nauka, Moscow, (in russian).

    Google Scholar 

  • Krinberg, I.A., and Taschilin A.V.: 1984, Ionosphere and plasmosphere, Nauka, Moscow, (in russian).

    Google Scholar 

  • Kuze, A., and Ogawa, T.: 1988, ‘Solar cycle variation of thermospheric NO: a model sensitivity study’, J. Geomagn. Geoelectr. 40, 1053.

    Google Scholar 

  • Lanzerotti, L.J.: 1977, ‘Measurements of energetic solar particles’, in O.R. White (Ed.), The solar output and its variation, Colorado Univ. Press, Boulder.

    Google Scholar 

  • Lean, J.L.: 1987, ‘Solar ultravioet irradiance variations: a review’, J. Geophys. Res. 92, 839.

    Google Scholar 

  • Leontovich, M.A.: 1936, ‘General equations of gas kinetic theory from point of view of random processes’, J. Exp. Theor. Phys. 5, 211, (in russian).

    Google Scholar 

  • Lie-Svendsen, O., Rees M.H., Stamnes K., and Whipple E.C.: 1991, ‘The kinetics of “hot” nitrogen atoms in upper atmosphere neutral chemistry’, Planet Space Sci. 39, 929.

    Google Scholar 

  • Lie-Svendsen, O., Rees M.H., Stamnes K.: 1992, ‘Helium escape from the earth's atmosphere: the charge exchange mechanism revisited’, Planet Space Sci. 40, 1639.

    Google Scholar 

  • Logan, D.A., and McElroy M.B.: 1977, ‘Distribution functions for energetic oxygen atoms in the Earth's lower atmosphere’, Planet Space Sci. 25, 117.

    Google Scholar 

  • Marconi, M.L., and Mendis D.A.: 1982, ‘The photochemical heating of the cometary atmosphere’, Astrophys. J. 260, 386.

    Google Scholar 

  • Marconi, M.L., and Mendis D.A.: 1983, ‘The atmosphere of a dirty-clathrate cometary nucleus: A two-phase, multifluid model’, Astrophys. J. 273, 381.

    Google Scholar 

  • Marov, M.Ya., and Kolesnichenko A.V.: 1987, Introduction to planetary aeronomy, Nauka, Moscow, (in russian).

    Google Scholar 

  • Marov, M.Ya., and Shematovich V.I.: 1985, ‘Numerical stochastic simulation of photochemistry in cometary atmospheres’, Keldysh Inst. of Appl. Math, Preprint 176, Moscow, (in russian).

  • Marov, M.Ya., and Shematovich V.I.: 1986, ‘Numerical simulation of solar shortwave radiation influence on Earth's upper atmospheres’, in Observations of artificial satellites, Moscow, 24, 84, (in russian).

    Google Scholar 

  • Marov, M.Ya., and Shematovich V.I.: 1987, ‘Numerical investigation of photochemistry of H2O dominant cometary atmosphere’, Keldysh Inst. of Appl. Math, Preprint 90, Moscow, (in russian).

  • Marov, M.Ya., and Shematovich V.I.: 1988, ‘Mathematical description of kinetics and dynamics of rarefied atmospheric gas’, in Observations of artificial celestial bodies, Moscow, 84, 144, (in russian).

    Google Scholar 

  • Marov, M.Ya., Kolesnichenko A.V., and Skorov Yu.V.: 1987, ‘Thermal photometric model of comet nucleus’, Astron. Herald 20, 47, (in russian).

    Google Scholar 

  • Marov, M.Ya., Shematovich V.I., and Bisikalo D.V.: 1990, Kinetic simulation of rarefied gas in the applied aeronomy problems, Keldysh Institute of Applied Mathematics, Moscow, (in russian).

    Google Scholar 

  • Marov, M.Ya., Shematovich V.I., and Bisikalo D.V.: 1992, ‘Numerical kinetic simulation of atmosphere photochemistry and dynamics’, Adv. Space Res. 12, 303.

    Google Scholar 

  • Mason, E.A. and Marrero T.R.: 1970, ‘The diffusion of atoms and molecules’, Adv. Mol. Phys. 6, 156.

    Google Scholar 

  • McCoy, R.P.: 1983, ‘Thermospheric odd nitrogen, 1, NO, N(4S), O(3P) densities from rocket measurements of the NO δ and γ bands and the O2 Herzberg I bands’, J. Geophys. Res. 88, 3197.

    Google Scholar 

  • McElroy, M.B.: 1972, ‘Mars: an evolving atmosphere’, Science 175, 443.

    Google Scholar 

  • McEwan, M.J., and Phillips L.F.: 1975, Chemistry of the atmosphere, John Wiley, New York.

    Google Scholar 

  • McKean, H.P.: 1966, ‘A class of Markov processes associated with nonlinear parabolic equation’, Proc. Nat. Acad. Sci. USA 56, 1907.

    Google Scholar 

  • Meriwether, J.W., Atreya S.K., Donahue T.M., and Burnside R.G. ‘Measurements of Balmer alpha emission from the hydrogen geocorona’, Geophys. Res. Lett. 7, 967.

  • Miroshin, R.N.: 1967, ‘Improved analysis of distribution functions and kinetic equations for rarefied gas’, in Aerodynamics of Rarefied Gases, Leningrad State Univ., Leningrad, (in russian).

    Google Scholar 

  • Mitchner, M., and Kruger C.: 1976, Partially ionized gases, Mir, Moscow, (in russian).

    Google Scholar 

  • Moffet, R.J.: 1988, ‘Rates of electron cooling in the upper atmosphere’, Planet. Space Sci. 36, 65.

    Google Scholar 

  • Montroll, A., and Lebowitz G. (Eds.): 1983, Noneqvilibrium phenomena: Boltzmann equation, Springer-Verlag, New York.

    Google Scholar 

  • Morgan, J.E., and Schiff H.J.: 1964, ‘Diffusion coefficients of O and N atoms in inert gases’, Can. J. Chem. 47, 300.

    Google Scholar 

  • Nagy, A.F., and Banks P.M.: 1970, ‘Photoelectron fluxes in the ionosphere’, J. Geophys. Res. 75, 6260.

    Google Scholar 

  • Nicolet, M., and Aiken A.C.: 1960, ‘The formation of the D region of the ionosphere’, J. Geophys. Res. 65, 1469.

    Google Scholar 

  • Olivero, J.J., Stagat W., and Green A.E.S.: 1972, ‘Electron deposition in water vapor with atmospheric applications’, J. Geophys. Res. 77, 4797.

    Google Scholar 

  • Opik, J.: 1963, ‘Selective escape of gases’, Geophys. J. 7, 490.

    Google Scholar 

  • Oppenheimer, M.: 1975, ‘Gas phase chemistry in comets’, Astrophys. J. 196, 251.

    Google Scholar 

  • Oran, E.S., Julienne P.S., and Strobel D.F.: 1975, ‘The aeronomy of odd nitrogen in the thermosphere’, J. Geophys. Res. 80, 3068.

    Google Scholar 

  • Peterson, L.R., Sawada T., Bass J.N., and Green A.E.S.: 1973, ‘Electron energy deposition in a gaseous mixture’, Comp. Phys. Comm. 5, 239.

    Google Scholar 

  • Polak, L.S.: 1979, Nonequilibrium chemical kinetics and its applications, Nauka, Moscow, (in russian).

    Book  MathSciNet  MATH  Google Scholar 

  • Polak, L.S., Goldenberg M.Y., and Levitsky A.A.: 1984, Computational methods in chemical kinetics, Nayka, Moscow.

    Google Scholar 

  • Prigogine, I.: 1962, Nonequilibrium statistical mechanics, Mir, Moscow, (in russian).

    Google Scholar 

  • Pyarnpuu, A.A., and Shematovich V.I.: 1985, ‘Structure of stochastic simulation of collisional processes in rarefied gaseous media’, in Reports in Applied Math., Computing Center, Moscow, (in russian).

    Google Scholar 

  • Pyarnpuu, A.A., and Shematovich V.I.: 1987, ‘Construction of structural stochastic models of collisional processes in rarefied gaseous media’, in Modeling in Mechanics, Novosibirsk, 1, 109, (in russian).

    Google Scholar 

  • Pyarnpuu, A.A., Shematovich V.I., and Zmievskaya G.I.: 1981, ‘Development of constructive physical-probabilistic analogue of collisional processes in rarefied gas’, Reports of USSR Ac. of Sci. 258, 815, (in russian).

    Google Scholar 

  • Pyarnpuu, A.A., Tsvetkov G.A., and Shematovich V.I.: 1986, ‘Structural stochastic simulation of relaxation problems’, in Reports in Applied Math., Computing Center, Moscow, (in russian).

    Google Scholar 

  • Rees, D., and Fuller-Rowell T.J.: 1987, ‘Global thermospheric modelling’, Phys. Scripta T18, 212.

    Google Scholar 

  • Rees, M.H.: 1987, ‘Modeling of the heating and ionizing of the polar thermosphere by magnetospheric electron and ion precipitation’, Phys. Scripta T18, 249.

    Google Scholar 

  • Rees, M.H.: 1989, Physics and chemistry of the upper atmosphere, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rees, M.H., Emery B.A., Roble R.G., and Stamnes K.: 1983, ‘Neutral and ion gas heating by auroral precipitation’, J. Geophys. Res. 88, 6289.

    CAS  Google Scholar 

  • Richards, P.G., and Torr D.G.: 1983, ‘A simple theoretical model for calculating and parameterising the ionospheric photoelectron flux’, J. Geophys. Res. 88, 2155.

    Google Scholar 

  • Richards, P.G., and Torr D.G.: 1984, ‘An investigation of the consistency of the ionospheric measurements of the photoelectron flux and solar EUV flux’, J. Geophys. Res. 89, 5625.

    Google Scholar 

  • Richards, P.G., and Torr D.G.: 1985, ‘The altitude dependence of the ionospheric photoelectron flux: a comparison of the theory and measurements’, J. Geophys. Res. 90, 2877.

    Google Scholar 

  • Richards, P.G., and Torr D.G.: 1988, ‘Ratio of photoelectron to EUV ionization rates for aeronomic studies’, J. Geophys. Res. 93, 4060.

    Google Scholar 

  • Rishbeth, H., Gordon R., Rees D., and Fuller-Rowell T.J.: 1985, ‘Modelling of the thermospheric composition changes caused by a magnetic storm’, Planet. Space Sci. 33, 1283.

    Google Scholar 

  • Roble, R.G., and Dickinson R.E.: 1973, ‘Is there enough solar EUV radiation to maintain the global mean thermospheric temperature?’, J. Geophys. Res. 78, 249.

    Google Scholar 

  • Roble, R.G., and Emery B.A.: 1983, ‘On the global mean temperature of the thermosphere’, Planet. Space Sci. 31, 597.

    Google Scholar 

  • Roble, R.G., and Ridley E.C.: 1987, ‘An auroral model for the NCAR thermospheric general circulation model (TGCM)’, Ann. Geophys. 5, 369.

    Google Scholar 

  • Roble, R.G., Dickinson R.E., Ridley E.C., Emery B.A., Hays P.B., Killeen T.L., and Spencer N.: 1983, ‘The high latitude circulation and temperature structure of the thermosphere near solstice’, Planet. Space Sci. 31, 1479.

    Google Scholar 

  • Roble, R.G., Ridley E.C., and Dickinson R.E.: 1987, ‘On the mean global structure of the thermosphere’, J. Geophys. Res. 92, 8745.

    Google Scholar 

  • Roble, R.G., Killeen T.L., Spencer N.W., Heelis R.A., Reiff P.H., and Winningham J.D.: 1988, ‘Thermospheric dynamics during November 21–22, 1981: Dynamics Explorer measurements and TGCM predictions’, J. Geophys. Res. 93, 209.

    Google Scholar 

  • Rohrbaugh, R.P., and Nisbet J.S.; 1973, ‘Effect of energetic oxygen atoms on neutral density models’, J. Geophys. Res. 78, 6768.

    Google Scholar 

  • Rusch, D.W., and Barth C.A.: 1975, ‘Satellite measurement of nitric oxide in the polar region’, J. Geophys. Res. 80, 3719.

    Google Scholar 

  • Rusch, D.W., Gerard J.C., and Sharp D.W.: 1978, ‘The reaction of N(2 D) with O2 as a source of O(1 D) in aurorae’, Geophys. Res. Lett. 5, 1043.

    Google Scholar 

  • Rutherford, J.A., and Vroom D.A.: 1974, ‘The reaction of atomic oxygen with several atmospheric ions’, J. Chem. Phys. 61, 2514.

    Google Scholar 

  • Sampson, D.H.: 1965, Radiative contributions to energy and momentum transport in a gas, Interscience Publishers, New York.

    Google Scholar 

  • Schafer, D.A., Newman J.H., Smith K.A., and Stebbings R.F.: 1987, ‘Differential cross sections for scattering of 0.5-, 1.5-, and 5.0-keV oxygen atoms by He, N 2, and O 2’, J. Geophys. Res. 92, 6107.

    Google Scholar 

  • Schmidtke, G.: 1979, ‘Change of primary ion-electron production rates with solar EUV flux’, Ann. Geophys. 35, 141.

    Google Scholar 

  • Schmitt, G.A., Abreu V.J., and Hays P.B.: 1981, ‘Non-thermal O(1D) produced by dissociative recombination of O +2 : a theoretical model and observational results’, Planet. Space Sci. 29, 1095.

    Google Scholar 

  • Schunk, R.W.: 1987, ‘Interactions between the polar ionosphere and thermosphere’, Phys. Scripta T18, 256.

    Google Scholar 

  • Schunk, R.W., and Nagy A.F.: 1978, ‘Electron temperatures in the F-region of the ionosphere: theory and observations’, Rev. Geophys. 16, 355.

    Google Scholar 

  • Schunk, R.W., and Nagy A.F.: 1980, ‘Ionospheres of the terrestrial planets’, Rev. Geophys. 18, 813.

    Google Scholar 

  • Sharp, R.D., Johnson R.E., and Shelley E.G.: 1974, ‘The morphology of energetic O + in the magnetosphere’, J. Geophys. Res. 79, 144.

    Google Scholar 

  • Sharp, R.D., Johnson R.E., and Shelley E.G.: 1976a, ‘The morphology of energetic O + ions during two magnetic storms: Temporal variations’, J. Geophys. Res. 81, 3283.

    Google Scholar 

  • Sharp, R.D., Johnson R.E., and Shelley E.G.: 1976b, ‘The morphology of energetic O + ions during two magnetic storms: Latitudinal variations’, J. Geophys. Res. 81, 3292.

    Google Scholar 

  • Shelley, E.G., Johnson R.E., and Sharp R.D.: 1972, ‘Satellite observation of energetic heavy ions during a geomagnetic storm’, J. Geophys. Res. 77, 6104.

    Google Scholar 

  • Shelley, E.G., Johnson R.E., and Sharp R.D.: 1974, ‘The morphology of energetic O + in the magnetosphere’, in Magnetospheric Physics, 135, D.Reidel, Hingham, Massachusets.

    Google Scholar 

  • Shematovich, V.I.: 1979, ‘Numerical algorithms for non-stationary statistical model of gas mixtures with inner degrees of freedom’, in Reports in Applied Math., Computing Center, Moscow, (in russian).

    Google Scholar 

  • Shematovich, V.I.: 1980, Non-stationary statistical simulation of collisional physical and chemical processes in rarefied gas, Ph. D. Thesis, Computing Center, Moscow, (in russian).

    Google Scholar 

  • Shematovich, V.I.: 1982, ‘Numerical investigation of photochemical processes in the upper atmosphere: numerical stochastic model of photoprocesses’, in Scientific Reports of Institute of Astronomy, Moscow, 55, 160, (in russian).

    Google Scholar 

  • Shematovich, V.I.: 1987, ‘Numerical stochastic simulation of kinetics of atmospheric photochemistry’, in Marov M. (Ed.) Mathematical problems of applied aeronomy, Keldysh Inst. of Applied Math., Moscow, 199, (in russian).

    Google Scholar 

  • Shematovich, V.I., Bisikalo D.V., and Marov M.Ya.: 1991a, ‘Kinetic approach to the mathematical modeling of collisional physical and chemical processes in planetary atmospheres’, in Rarefield Gas Dynamics, 345, VCH, New York.

    Google Scholar 

  • Shematovich, V.I., Bisikalo D.V., and Gerard J.-C.: 1991b, ‘Non thermal nitrogen atoms in the Earth's thermosphere. I. Kinetics of “hot” N(4S)’, Geophys. Res. Lett. 18, 1691.

    Google Scholar 

  • Shematovich, V.I., Bisikalo D.V., and Gerard J.-C.: 1992, ‘The thermospheric odd nitrogen photochemistry: role of non-thermal N(4S) atoms’, Ann. Geophys. 10, 792.

    Google Scholar 

  • Shematovich V.I., Bisikalo D.V., and Gerard J.-C.: 1994, ‘A kinetic model of the formation of the hot oxygen geocorona. I. Quiet geomagnetic conditions’, J. Geophys. Res., in press.

  • Shizgal, B., and Lindenfeld M.J.: 1979, ‘Energy distribution function of translationally hot O(3P) atoms in the atmosphere of Earth’, Planet. Space Sci. 27, 1321.

    Google Scholar 

  • Shizgal, B., and Lindenfeld M.J.: 1980, ‘Further studies of non-maxwellian effects associated with the thermal escape of a planetary atmosphere’, Planet Space Sci. 28, 159.

    Google Scholar 

  • Shulman, L.M.: 1972, Dynamics of cometary atmosphere. Neutral gas, Naukova Dumka, Kiev, (in russian).

    Google Scholar 

  • Shulman, L.M.: 1988, Nuclei of comets, Nauka, Moscow, (in russian).

    Google Scholar 

  • Siskind, D.E., Barth C.A., and Roble R.G.: 1989, ‘The response of thermospheric nitric oxide to an auroral storm, 1., Low and mid latitudes’, J. Geophys. Res. 94, 16885.

    Google Scholar 

  • Siskind, D.E., Barth C.A., and Cleary D.D.: 1990, ‘The possible effect of solar soft X Rays on thermospheric nitric oxide’, J. Geophys. Res. 95, 4311.

    Google Scholar 

  • Skorochod, A.V.: 1983, Stochastic equations for complex systems, Nauka, Moscow, (in russian).

    Google Scholar 

  • Smith, M.F., and Rees D.: 1985, ‘Solar EUV heating efficiencies in the thermosphere’, Planet. Space Sci. 33, 1451.

    Google Scholar 

  • Solomon, S.: 1983, ‘The possible effects of translationally excited nitrogen atoms on lower thermospheric odd nitrogen’, Planet Space Sci. 33, 135.

    Google Scholar 

  • Solomon, S., and Garcia R.R.: 1984, ‘Transport of thermospheric NO to the upper stratosphere?’, Planet Space Sci. 34, 399.

    Google Scholar 

  • Spohn, H.: 1980, ‘Kinetic equations from hamiltonian dynamics: Markovian limits’, Rev. Modern Phys. 53, 569.

    Google Scholar 

  • Stamnes, K.: 1980, ‘Analytic approach to electron transport and energy degradation’, Planet. Spase Sci. 28, 427.

    Google Scholar 

  • Stamnes, K., and Rees M.H.: 1983, ‘Inelastic scattering effects on photoelectron spectra and ionospheric electron temperature’, J. Geophys. Res. 88, 6301.

    Google Scholar 

  • Stebbings, R.F., Smith A.C.H., and Ehrhardt H.: 1964, ‘Charge transfer between oxygen atoms and O + and H + ions’, J. Geophys. Res. 69, 2349.

    Google Scholar 

  • Stolarski, R.S., Hays P.B., and Roble R.G.: 1975, ‘Atmospheric heating by solar EUV radiation’, J. Geophys. Res. 80, 2266.

    Google Scholar 

  • Strickland, D.J., Book D.L., Coffey T.P., and Fedder J.A.: 1976, ‘Transport equation techniques for the deposition of auroral electrons’, J. Geophys. Res. 81, 2755.

    Google Scholar 

  • Struminskiy, V.V.: 1982, ‘Kinetic theory of gas mixtures’, in Molecular Gas Dynamics, Nauka, Moscow, 132, (in russian).

    Google Scholar 

  • Swider, W.: 1978, ‘Daytime nitric oxide at the base of the thermosphere’, J. Geophys. Res. 89, 4407.

    Google Scholar 

  • Thomas, R.J.: 1978, ‘A high-altitude rocket measurement of nitric oxide’, J. Geophys. Res. 89, 513.

    Google Scholar 

  • Tobiska, W.K.: 1991, ‘Revised solar extreme ultraviolet flux model’, J. Atmos. Terr. Phys. 53, 1005.

    Google Scholar 

  • Tobiska, W.K., and Barth C.A.: 1990, ‘A solar EUV flux model’, J. Geophys. Res. 95, 8243.

    Google Scholar 

  • Torr, M.R., and Torr D.G.: 1982, ‘The role of metastable species in the thermosphere’, Rev. Geophys. Space Phys. 20, 91.

    Google Scholar 

  • Torr, M.R., and Torr D.G.: 1985, ‘Ionization frequencies for solar cycle 21: revised’, J. Geophys. Res. 90, 6675.

    Google Scholar 

  • Torr, M.R., Walker J.C.G., and Torr D.G.: 1974, ‘Escape of fast oxygen from the atmosphere during geomagnetic storms’, J. Geophys. Res. 79, 5267.

    Google Scholar 

  • Torr, M.R., Torr D.G., Ong R.A., and Hinteregger H.E.: 1979, ‘Ionization frequencies for major thermospheric constituents as a function of solar cycle’, Geophys. Res. Lett. 6, 771.

    Google Scholar 

  • Torr, M.R., Richards P.G., and Torr D.G.: 1980, ‘A new determination of the ultraviolet heating efficiency of the thermosphere’, J. Geophys. Res. 85, 6819.

    Google Scholar 

  • Torr, M.R., Torr D.G., Roble R.G., and Ridley E.C.: 1982, ‘The dynamic response of the thermosphere to the energy influx resulting from energetic O + ions’, J. Geophys. Res. 87, 5290.

    Google Scholar 

  • Vallander, S.V.: 1967, ‘Probabilistic interpretation of rarefied gas kinetics problems’, in Aerodynamics of Rarefied Gases, Leningrad State Univ., Leningrad, 3, 5, (in russian).

  • Van Dishoeck, E.F., and Dalgarno A.: 1984, ‘The dissociation of OH and OD in comets by solar radiation’, Icarus 59, 305.

    Google Scholar 

  • Uhlenbeck, G.E.: 1963, ‘Boltzmann equation’, Appendix I in Kac M. Probability and related problems in physics, Mir, Moscow, (in russian).

    Google Scholar 

  • Whipple, E.C., VanZandt T.E., and Love C.H.: 1975, ‘Kinetic theory of warm atoms: non-Maxwellian velocity distributions and resulting Doppler-broadered emission-line profiles’, J. Chem. Phys. 62, 3024.

    Google Scholar 

  • Yanitskiy, V.E.: 1975, ‘Statistical model of ideal gas flow and some its features’, in Numerical Methods of Fluid Mechanics, Novosibirsk, 6, 139, (in russian).

    Google Scholar 

  • Yanitskiy, V.E.: 1991, ‘Operator approach to the direct Monte-Carlo simulation theory in rarefied gas dynamics’, in Rarefield Gas Dynamics, 770, VCH, New York.

    Google Scholar 

  • Yee, J.-H.: 1988, ‘Non-thermal distribution of O(1D) atoms in the night-time thermosphere’, Planet. Space Sci. 36, 89.

    Google Scholar 

  • Yee, J.H., and Dalgarno A.: 1987, ‘Energy transfer of O(1D) atoms in collisions with O(3P) atoms’, Planet Space Sci. 35, 399.

    Google Scholar 

  • Yee, J.-H., and Killeen T.L.: 1986, ‘Thermospheric production of O(1 S) by dissociative recombination of vibrationally excited O +2 ’, Planet Space Sci. 34, 1101.

    Google Scholar 

  • Yee, J.H., Meriwether J.W., and Hays P.B.: 1980, ‘Detection of a corona of fast oxygen atoms during solar maximum’, J. Geophys. Res. 85, 3396.

    Google Scholar 

  • Yee, J.-H., Guberman S.L., and Dalgarno A.: 1990, ‘Colisional quenching of O(1D) by O(3P)’, Planet. Space Sci. 38, 647.

    Google Scholar 

  • Ytrehus, T.: 1977, ‘Theory and experiments on gas kinetics in evaporation’, in Rarefied Gas Dynamics, Springer-Verlag, New York, 2, 1197.

  • Zipf, E.C., and McLaughlin R.W.: 1978, ‘On the dissociation of nitrogen by electron impact and by EUV photo-absorption’, Planet. Space Sci. 26, 449.

    Google Scholar 

  • Zipf, E.C., Espy P.J., and Boyle C.F.: 1980, ‘Excitation and collisional deactivation of metastable N(2P) atoms in auroras’, J. Geophys. Res. 85, 687.

    Google Scholar 

  • Zmievskaya, G.I., Pyarnpuu A.A., and Shematovich V.I.: 1979, ‘Simulation of physical and chemical processes in gas mixtures’, Reports of USSR Academy of Sci. 247, 561, (in russian).

    Google Scholar 

  • Zmievskaya, G.I., Pyarnpuu A.A., and Shematovich V.I.: 1980, ‘Mathematical base for physical-probabilistic analogue development for physical and chemical kinetics’, in Reports in Applied Math., Computing Center, Moscow, (in russian).

    Google Scholar 

  • Zmievskaya, G.I., Marov M.Ya., and Shematovich V.I.: 1982, ‘Numerical investigation of photochemical processes in the upper atmosphere: stochastic simulation of UV solar radiation influence on rarefied multicomponent gas’, in Scientific Reports of Institute of Astronomy, Moscow, 55, 144, (in russian).

    Google Scholar 

  • Zmievskaya, G.I., Pyarnpuu A.A., and Shematovich V.I.: 1983, ‘Stochastic model of discrete rarefied medium as a mean for investigation of physical and chemical kinetics problems’, in Numerical Methods of Fluid Mechanics, Novosibirsk, 18, 74, (in russian).

    Google Scholar 

  • Zmievskaya, G.I., Marov M.Ya., and Shematovich V.I.: 1984, ‘Stochastic simulation of interaction between the solar radiation and rarefied gas of the Earth's upper atmosphere’, in Observations of artificial satellites, Moscow, 21, 249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marov, M.Y., Shematovich, V.I. & Bisicalo, D.V. Nonequilibrium aeronomic processes. Space Sci Rev 76, 1–204 (1996). https://doi.org/10.1007/BF00240583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240583

Navigation