Skip to main content
Log in

Estimation of Deformation Site Parameters for Symmetric and Asymmetric Rolling of a Strip Using Computer Simulation

  • PLATE ROLLING
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Computer simulation of longitudinal rolling is performed for different combinations of the diameters of the upper and lower rolls: 600–600, 590–600, 570–600, and 300–600 mm. The rolling for each variant of combinations of working roll diameters has been carried out in three passes (the initial strip thickness is 2 mm; the gap between the rolls is 1.4 mm in the first pass, 0.98 mm in the second pass, and 0.66 mm in the third pass. The methods have been proposed for determining the lengths of the arc of contact and of the actual deformation site, and the lengths of external zones have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. T. Morimoto, F. Yoshida, I. Chikushi, and J. Yanagimoto, “Asymmetric rolling theory based on numerical analysis using Orowan’s theory,” Tetsu-to-Hagane 92, 601–608 (2006). https://doi.org/10.2355/tetsutohagane1955.92.10_601

    Article  CAS  Google Scholar 

  2. M. P. Chebykin, “Modeling of asymmetrical rolling: Unsymmetrical rolling with the upper working roll shifted radially relative to the lower working roll,” Byull. Chern. Metall., No. 3, 77–81 (2016).

  3. R. I. Khallyev and P. N. Denishchenko, “Finite element modeling of asymmetric rolling process on the basis of ABAQUS software package,” in Proc. IV Int. Sci. and Pract. Conf. of Young Scientists Metallurgy of the XXI Century through the Eyes of Young Scientists (Donetskii Nats. Tekh. Univ., Donetsk, 2018), pp. 184–186.

  4. Zh. A. Ashkeyev, V. A. Andreyachshenko, and Zh. U. Bukanov, “Investigation of asymmetrical rolling of billets,” Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., No. 4, 27–35 (2020). https://doi.org/10.15593/perm.mech/2020.4.03

  5. K. A. Gogaev, G. Ya. Kalutskii, V. S. Voropaev, and A. S. Kolpakov, “Improvement of the rolling process of metal powders by using the speed asymmetry of working rolls,” Obrab. Mater. Davleniem, No. 4 (33), 196–201 (2012).

    Google Scholar 

  6. V. S. Voropaev, G. Ya. Kalutskii, and Yu. N. Podrezov, “Production of strips from titanium powder using asymmetric rolling technology,” Poroshkovaya Metall., Nos. 9–10, 11–23 (2012).

  7. T. Hirohata, S. Masaki, and S. Shima, “Experiment on metal powder compaction by differential speed rolling,” J. Mater. Process. Technol., Nos. 1–3, 113–117 (2001). https://doi.org/10.1016/s0924-0136(01)00492-7

    Article  Google Scholar 

  8. D. Wang, C. Yu, M. Li, X. He, Z. Xie, and L. Wang, “Research on flexible asymmetric rolling process for three-dimensional surface parts,” Int. J. Adv. Manuf. Technol. 95, 2339–2347 (2018). https://doi.org/10.1007/s00170-017-1362-2

    Article  Google Scholar 

  9. R. Lapovok, D. Orlov, I. B. Timokhina, A. Pougis, L. S. Toth, P. D. Hodgson, A. Haldar, and D. Bhattacharjee, “Asymmetric rolling of interstitial-free steel using one idle roll,” Metall. Mater. Trans. A 43 (4), 1328–1340 (2012). https://doi.org/10.1007/s11661-011-0960-0

    Article  CAS  Google Scholar 

  10. O. D. Biryukova, D. O. Pustovoitov, A. M. Pesin, and A. E. Kozhemyakina, “The possibility of obtaining a gradient structure of the aluminum laminated composite during asymmetric deformation,” Teoriya Tekhnol. Metall. Proizvod., No. 2 (37), 38–46 (2021).

  11. A. M. Pesin, D. O. Pustovoitov, T. V. Shveeva, V. L. Steblyanko, and S. A. Fedoseev, “Modeling of non-monotonicity of metal flow in asymmetric thin sheet rolling with mismatch of roll speeds,” Vestn. Magnitogorskogo Gos. Tekh. Univ. G.I. Nosova 15 (1), 56–63 (2017). https://doi.org/10.18503/1995-2732-2017-15-1-56-63

    Article  Google Scholar 

  12. A. M. Pesin, H. Dyja, A. Kawalek, P. Szyiński, D. O. Pustovoytov, A. V. Satonin, and A. S. Churukanov, “The investigation of speed asymmetry effect on parameters of various sheet rolling processes,” Vestn. Magnitogorskogo Gos. Tekh. Univ. G.I. Nosova, No. 1, 86–91 (2014).

    Google Scholar 

  13. A. I. Rudskoi, G. E. Kodzhaspirova, and E. I. Kamelina, “Modeling of the recrystallization processes during asymmetric rolling of a high-strength low-alloy steel,” Russ. Metall. 2021 (4), 486–491 (2021). https://doi.org/10.1134/s0036029521040273

    Article  ADS  Google Scholar 

  14. A. Nilsson, “Front-end bending in plate rolling,” Scandinavian J. Metall. 30, 337–344 (2001). https://doi.org/10.1034/j.1600-0692.2001.300510.x

    Article  CAS  Google Scholar 

  15. S. A. A. A. Mousavi, S. M. Ebrahimi, and R. Madoliat, “Three dimensional numerical analyses of asymmetric rolling,” J. Mater. Process. Technol. 187188, 725–729 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.045

    Article  CAS  Google Scholar 

  16. X. Ren, Yu. Huang, X. Zhang, H. Li, and Yo. Zhao, “Influence of shear deformation during asymmetric rolling on the microstructure, texture, and mechanical properties of the AZ31B magnesium alloy sheet,” Mater. Sci. Eng., A 800, 140306 (2021). https://doi.org/10.1016/j.msea.2020.140306

    Article  CAS  Google Scholar 

  17. X. Xu, Yu. Deng, X. Guo, and Q. Pan, “Influence of asymmetric rolling process and thickness reduction on the microstructure and mechanical properties of the Al–Mg–Si alloy,” Met. Mater. Int. 28, 1620–1629 (2021). https://doi.org/10.1007/s12540-021-01050-2

    Article  CAS  Google Scholar 

  18. D. Pustovoytov, A. Pesin, and P. Tandon, “Asymmetric (hot, warm, cold, cryo) rolling of light alloys: A review,” Metals 11 (6), 956 (2021). https://doi.org/10.3390/met11060956

    Article  CAS  Google Scholar 

  19. R. L. Shatalov, A. S. Kalmykov, and I. M. Taupek, “Study of the deformation during turning of brass sheets on a two-high mill by rolling methods and computer simulation,” Russ. Metall. (Met.) 2021 (13), 1771–1776 (2021). https://doi.org/10.1134/s0036029521130267

    Article  ADS  Google Scholar 

  20. Ya. Liu, H. Liu, and Yi. Liu, “Application of simulation in optimization design of casting billet,” in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conf. (ITNEC), Chongqing, China, 2020 (IEEE, 2020), pp. 1773–1776. https://doi.org/10.1109/itnec48623.2020.9085161

  21. S. Sidelnikov, I. Dovzhenko, and I. Belokonova, “Simulation of process rolling plates from alloy of Al–Mg system economically doped with scandium,” Solid State Phenom. 316, 509–514 (2021). https://doi.org/10.4028/www.scientific.net/ssp.316.509

  22. J. Wang, Q. Zhaog, C. Wang, and J. Yuan, “Effect of roll convexity and stress triaxiality on rolling damage of 93 tungsten alloy sheet,” J. Mater. Eng. 10, 27–33 (2014). https://doi.org/10.3969/j.issn.1001-4381.2013.06.001

    Article  CAS  Google Scholar 

  23. M. N. Skripalenko, M. M. Skripalenko, B. H. Tran, D. A. Ashuhmin, S. V. Samusev, and A. A. Sidorov, “Detection of influence of upper working rolls vibrayion on thickness of sheet at cold rolling with the help of DEFORM-3D software,” Komp’yuternye Issled. Model. 9 (1), 111–116 (2017). https://doi.org/10.20537/2076-7633-2017-9-111-116

    Article  Google Scholar 

  24. M. N. Skripalenko, M. M. Skripalenko, D. A. Ashikh-min, A. A. Sidorov, and X. Yang, “Wavelet analysis of fluctuations in the thickness of cold-rolled strip,” Metallurgist 57 (7–8), 606–611 (2013). https://doi.org/10.1007/s11015-013-9777-y

    Article  Google Scholar 

  25. A. Kozhevnikov, N. Bolobanova, I. Kozhevnikova, and D. Shalaevskii, “The study of influence of work rolls vibration during cold rolling on the quality of steel strip surface,” Metalurgija (Metallurgy) 59, 74–76 (2020). https://doi.org/10.3103/s0967091217100059

    Article  Google Scholar 

  26. E. A. Garber and I. A. Kozhevnikova, in Rolling Theory: Textbook for University Students (Cherepovetsk. Gos. Univ., Cherepovets, 2013), pp. 190–194.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Skripalenko.

Ethics declarations

The authors of this work declare that they have no conflict of interests.

Additional information

Translated by N. Wadhwa

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikov, A.V., Skripalenko, M.M., Kozhevnikova, I.A. et al. Estimation of Deformation Site Parameters for Symmetric and Asymmetric Rolling of a Strip Using Computer Simulation. Russ. Metall. 2023, 2005–2011 (2023). https://doi.org/10.1134/S0036029523700039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523700039

Keywords:

Navigation