Skip to main content
Log in

Influence of Asymmetric Rolling Process and Thickness Reduction on the Microstructure and Mechanical Properties of the Al–Mg-Si Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The influence of the asymmetric rolling process (ASR) and thickness reduction on the microstructure and mechanical properties of Al–Mg–Si alloys is studied. The specimens of the ASR and higher thickness reduction show higher strength (both the ultimate tensile strength and yield strength) and lower elongation (El). However, both the strength and El are reduced with the increase of the rotation speed ratio (ω12) in the specimens treated by the ASR. The grain size, density of dislocations, volume fraction of deformation texture and number density of precipitates are the main reasons causing the difference in strength and El. The increment in strength is mainly due to the increase of deformation texture, density of dislocations during the cold rolling and number density of precipitates formed during subsequent ageing. The reduction of volume fraction of deformation texture and number density of precipitates are responsible for the decrease of the strength in the specimens treated by the ASR. The high-density dislocations in turn provide little room for the accumulation of dislocations and therefore reduces the EI.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)

    Article  Google Scholar 

  2. M.A.V. Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergena, Acta Mater. 55, 2183 (2007)

    Article  Google Scholar 

  3. Y. Birol, M. Karlk, Mater. Sci. Technol. 21, 153 (2005)

    Article  CAS  Google Scholar 

  4. S. Karabay, Mater. Des. 27, 821 (2006)

    Article  CAS  Google Scholar 

  5. W.C. Yang, L.P. Huang, R.R. Zhang, M.P. Wang, Z. Li, Y.L. Jia, R.S. Lei, X.F. Sheng, J. Alloy. Compd. 514, 220 (2012)

    Article  CAS  Google Scholar 

  6. A.K. Gupta, D.J. Lloyd, S.A. Court, Mater. Sci. Eng. A 316, 11 (2001)

    Article  Google Scholar 

  7. X.X. Xu, Z. Yang, Y.L. Ye, G.X. Wang, X.L. He, Mater. Charact. 119, 114 (2016)

    Article  CAS  Google Scholar 

  8. K. Buchanan, K. Colas, J. Ribis, A. Lopez, J. Garnier, Acta Mater. 132, 209 (2017)

    Article  CAS  Google Scholar 

  9. J.Z. Dang, Y.F. Huang, J. Cheng, T. Nonferr. Metal. Soc. 19, 540 (2009)

    Article  CAS  Google Scholar 

  10. J. Man, L. Jing, S.G. Jie, J. Alloy. Compd. 437, 146 (2007)

    Article  CAS  Google Scholar 

  11. L.Z. Yan, Y.A. Zhang, X.W. Li, Z.H. Li, F. Wang, H.W. Liu, B.Q. Xiong, Prog. Nat. Sci. Mater. 24, 97 (2014)

    Article  CAS  Google Scholar 

  12. M.Y. Song, I.S. Kim, J.H. Kim, S.K. Hong, Met. Mater. Int. 27, 1374 (2021)

    Article  Google Scholar 

  13. H. Li, M. Qingzhong, Z. Wang, F. Miao, B. Fang, R. Song, Z.Q. Zheng, Mater. Sci. Eng. A 617, 165 (2014)

    Article  CAS  Google Scholar 

  14. L. Mei, X.P. Chen, G.J. Huang, Q. Liu, J. Alloy. Compd. 777, 259 (2019)

    Article  CAS  Google Scholar 

  15. H. Li, Z.H. Yan, L.Y. Cao, Mater. Sci. Eng. A 728, 88 (2018)

    Article  CAS  Google Scholar 

  16. Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Scripta Mater. 116, 82 (2016)

    Article  CAS  Google Scholar 

  17. Y.Y. Weng, Z.H. Jia, L.P. Ding, M.P. Liu, X.Z. Wu, Q. Liu, Prog. Nat. Sci. Mater. 28, 363 (2018)

    Article  CAS  Google Scholar 

  18. D.Y. Yin, Q. Xiao, Y.Q. Chen, H.Q. Liu, D.Q. Yi, B. Wang, S.P. Pan, Mater. Des. 95, 329 (2016)

    Article  CAS  Google Scholar 

  19. L.P. Ding, Z.H. Jia, Y.Y. Liu, Y.Y. Weng, Q. Liu, J. Alloy. Compd. 688, 362 (2016)

    Article  CAS  Google Scholar 

  20. J. Buha, R.N. Lumley, A.G. Crosky, Metall. Mater. Trans. A 37, 3119 (2006)

    Article  Google Scholar 

  21. R.N. Lumley, I.J. Polmear, A.J. Morton, Mater. Sci. Forum. 396–402, 893 (2002)

    Article  Google Scholar 

  22. X.H. Xu, Y.L. Deng, S.Q. Chi, X.B. Guo, J. Mater. Res. Technol. 9, 230 (2020)

    Article  CAS  Google Scholar 

  23. Y.K. Xie, Y.L. Deng, Y. Wang, X.B. Guo, J. Alloy. Compd. 836, 155445 (2020)

    Article  CAS  Google Scholar 

  24. C.Q. Ma, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Mater. Sci. Eng. A 733, 307 (2018)

    Article  CAS  Google Scholar 

  25. S. Wronski, B. Bacroix, Acta Mater. 76, 404 (2014)

    Article  CAS  Google Scholar 

  26. M.Y. Amegadzie, D.P. Bishop, Mater. Today Commun. 25, 101283 (2020)

    Article  CAS  Google Scholar 

  27. J. Sidor, A. Miroux, R. Petrov, L. Kestens, Acta Mater. 56, 2495 (2008)

    Article  CAS  Google Scholar 

  28. H. Yu, C. Lu, K. Tieu, X. Liu, Y. Sun, Q. Yu, C. Kong, Sci. Rep. 2, 772 (2012)

    Google Scholar 

  29. D.C.C. Magalhes, A.M. Kliauga, M. Ferrante, V.L. Sordi, Mater. Sci. Eng. A 736, 53 (2018)

    Article  Google Scholar 

  30. Z. Zribi, H.H. Ktari, F. Herbst, V. Optasanu, N. Njah, Mater. Charact. 153, 190 (2019)

    Article  CAS  Google Scholar 

  31. P.J. Konijnenberg, S. Zaefferer, D. Raabe, Acta Mater. 99, 402 (2015)

    Article  CAS  Google Scholar 

  32. H. Jin, D.J. Lloyd, Mater. Sci. Technol. 26, 754 (2010)

    Article  CAS  Google Scholar 

  33. Li. Ding, Z.  Jia, J.-F. Nie, Y. Weng, L. Cao, H. Chen, X. Wu, Q. Liu, Acta Mater. 145, 437 (2018)

    Article  CAS  Google Scholar 

  34. W.C. Yang, M.P. Wang, R.R. Zhang, Q. Zhang, X.F. Sheng, Scripta Mater. 62, 705 (2010)

    Article  CAS  Google Scholar 

  35. W.J. He, X. Chen, N. Liu, B.F. Luan, G.H. Yuan, Q. Liu, J. Alloy. Compd. 699, 160 (2017)

    Article  CAS  Google Scholar 

  36. M. Abbasi-Baharanchi, F. Karimzadeh, M.H. Enayati, Mater. Sci. Eng. A 683, 56 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Project No. 2016YFB0300901), and the National Science Foundation of China (Project No. 51705539). The authors would like to take this opportunity to express their appreciation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xu Xuehong, Deng Yunlai, Guo Xiaobin and Pan Qinglin. The first draft of the manuscript was written by Xu Xuehong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunlai Deng.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Deng, Y., Guo, X. et al. Influence of Asymmetric Rolling Process and Thickness Reduction on the Microstructure and Mechanical Properties of the Al–Mg-Si Alloy. Met. Mater. Int. 28, 1620–1629 (2022). https://doi.org/10.1007/s12540-021-01050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01050-2

Keywords

Navigation