Skip to main content
Log in

Development of an Approach to Determining the Representative Volume Element of the Al/SiC Metal Matrix Composite Material Fabricated by Squeeze Casting

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

This work is aimed at solving the challenging problem of developing an approach to determining the representative volume of an Al/SiC metal matrix composite material (MMC) with 55 vol % silicon carbide synthesized by a unique squeeze casting technology. This volume is referred to as representative volume element (RVE). Initially, the minimum unit cell size was found by a metallographic method. The RVE of the MMC, where the average filler content is equal to the average filler content in the composite material, begins with a 40 × 40-μm region. The RVE is determined by the finite element method. To perform numerical RVE calculations, we solved the two-dimensional problem of tension an element in the cross section of the MMC consisting of hard SiC particles and a pure aluminum matrix. A stress–strain curve recorded during uniaxial tension is used as the response of MMC to an external action. The problems with regions of 40 × 40, 50 × 50, 70 × 70, 100 × 100, 200 × 200 and 400 × 400 μm are solved. The results of the numerical calculations demonstrate that the minimum RVE of the Al/SiC MMC with 55 vol % silicon carbide is 200 × 200 μm. In addition, depth-sensing indentation is recommended as an experimental method for estimating RVE. When a pyramidal indenter is pressed into the surface of an MMC sample, the indentation diagram reflects the influence of both the composite matrix and silicon carbide particles. The indentation force (correspondingly, surface area) used in experiments is such that the influence of the site of indentation on the indentation diagram is minimal. Instrumented indentation used to determine RVE demonstrates that it is 200 × 200 × 200 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Chawla and K. Chawla, Metal Matrix Composites (Springer, New York, 2013).

    Book  Google Scholar 

  2. Yu. A. Kurganova and A. G. Kolmakov, Structural Metal-Matrix Composite Materials: Tutorial (Izd. MGTU, Moscow, 2015).

    Google Scholar 

  3. N. Natarajan, V. Krishnaraj, and J. P. Davim, Metal Matrix Composites: Synthesis, Wear Characteristics, Machinability Study of MMC Brake Drum (Springer, New York, 2015).

    Google Scholar 

  4. N. Gangil, A. N. Siddiquee, and S. Maheshwari, “Aluminium based in-situ composite fabrication through friction stir processing: a review,” J. Alloys Compd. 715 (25), 91–104 (2017).

    Article  CAS  Google Scholar 

  5. M. Rajamuthamilselvan and S. Ramanathan, “Development of processing map for 7075 Al/20% SiCp composite,” J. Mater. Eng. Perform., No. 21, 191–196 (2012).

  6. T. A. Chernysheva, L. I. Kobeleva, L. K. Bolotova, and I. V. Katin, “Tribological properties of cast aluminum matrix composites,” Deform. Razrushenie Mater., No. 1, 16–21 (2014).

  7. A. Pramanik, M. N. Islam, I. J. Davies, B. Boswell, Y. Dong, A. K. Basak, M. S. Uddin, A. R. Dixit, and S. Chattopadhyaya, “Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size,” Int. J. Fatigue 102, 9–17 (2017).

    Article  Google Scholar 

  8. M. Ozerov, M. Klimova, A. Kolesnikov, N. Stepanov, and S. Zherebtsov, “Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests,” Mater. Design. 112, 17–26 (2016).

    Article  CAS  Google Scholar 

  9. W. Zhang, H. Chen, and R. Prentki, “Numerical analysis of the mechanical behavior of ZTAp/Fe composites,” Comput. Mater. Sci. 137, 153–161 (2017).

    Article  CAS  Google Scholar 

  10. D. Dumont, F. Lebon, and A. O. Khaoua, “A numerical tool for periodic heterogeneous media: application to interface in Al/SiC composites,” J. Appl. Mech. 67 (1), 214–217 (1999).

    Article  Google Scholar 

  11. C. A. Lurie, A. A. Kasimovsky, Yu. O. Solyaev, and D. D. Ivanova, “Modeling of a high-temperature structural material based on SiC ceramics reinforced with carbon nanotubes,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekhanika, No. 4, 142–159 (2011).

  12. Fugong Qi, Haimin Ding, Xianlong Wang, Qing Liu, Biqiang Du, and Xinchun Zhang, “The stress and strain field distribution around the reinforced particles in Al/TiC composites a finite element modeling study,” Comput. Mater. Sci. 137, 297– 305 (2017).

    Article  CAS  Google Scholar 

  13. J. Zhang, Q. Ouyang, Q. Guo, Z. Li, G. Fan,Y. Su, L. Jiang, E. Lavernia, J. Schoenung, and D. Zhang, “3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites,” Comp. Sci. Technol. 123, 1–9 (2016).

    Article  CAS  Google Scholar 

  14. R. Hill, “Elastic properties of reinforced solids: some theoretical principles,” J. Mech. Phys. Solids, 357–372 (1963).

  15. I. M. Gitman, H. Askes, and L. J. Sluys, “Representative volume: existence and size determination,” Eng. Fract. Mech. 74, 2518–2534 (2007).

    Article  Google Scholar 

  16. D. V. Griffiths, J. Paiboon, J. Huang, and G. A. Fenton, “Homogenization of geomaterials containing voids by random fields and finite elements,” Int. J. Solid Structur., 2006–2014 (2012).

  17. L. Bouhala, Y. Koutsawa, A. Makradi, and S. Belouettar, “An advanced numerical method for predicting effective elastic properties of heterogeneous composite materials,” Comp. Structur. 117, 114–123 (2014).

    Article  Google Scholar 

  18. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, “Correlation between 2D and 3D flow curve modeling of DP steels using a microstructure- based RVE approach,” Mater. Sci. Eng. A 560, 129–139 (2013).

    Article  CAS  Google Scholar 

  19. S. V. Smirnov, A. V. Konovalov, M. V. Myasnikova, Yu. V. Khalevitskii, A. S. Smirnov, and A. S. Igumnov, “Numerical study of the localization of plastic deformation and fracture of an Al/SiC metal matrix composite,” Fiz. Mezomekh. 20 (2), 61–70 (2017).

    Google Scholar 

  20. A. S. Smirnov, G. A. Belozerov, E. O. Smirnova, A. V. Konovalov, V. P. Shveikin, and O. Y. Muizemnek, “Specimen preparation for metal matrix composites with a high volume fraction of reinforcing particles for EBSD analysis,” J. Mater. Eng. Perform. 25 (7), 2907–2913 (2016).

    Article  CAS  Google Scholar 

  21. N. B. Pugacheva, N. S. Michurov, E. I. Senaeva, and T. M. Bykova, “Structure and thermophysical properties of aluminum matrix composites,” Fiz. Met. Metalloved. 117 (11), 1188–1195 (2016).

    Google Scholar 

  22. S. Smirnov, D. Vichuzhanin, A. Nesterenko, A. Smirnov, N. Pugacheva, and A. Konovalov, " A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature," Int. J. Mater. Form. 10 (5), 831–843 (2017).

    Article  Google Scholar 

  23. M. Dhanashekar and V. S. S. Kumar, “Squeeze casting of aluminium metal matrix composites—an overview,” Proced Eng. 97, 412–420 (2014).

    Article  CAS  Google Scholar 

  24. Y. Wang, S. Zang, L. Sun, and J. Ma, “Constructing micro-mechanical representative volume element of medium Mn steel from EBSD data,” Mater. Design. 129, 34–43 (2017).

    Article  CAS  Google Scholar 

  25. E. M. Morozov, V. A. Levin, and A. V. Vershinin, Strength Analysis: Fidesis in the Hands of an Engineer (LENAND, Moscow, 2015).

    Google Scholar 

  26. V. T. Kochetov, M. V. Kochetov, and A. D. Pavlenko, Resistance of Materials: Tutorial (Izd. BKhV-Peterburg, St. Petersburg, 2004).

  27. P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Strain Resistance of Metals and Alloys: A Handbook (Metallurgiya, Moscow, 1983).

    Google Scholar 

  28. G. G. Gnesin, Silicon Carbide Materials (Metallurgiya, Moscow, 1977).

    Google Scholar 

  29. T. A. Zubkova, I. L. Yakovleva, L. E. Karkina, and I. A. Veretennikova, “Nanoindentation study of the hardness and the elastic modulus of cementite in the structure of granular pearlite,” Metalloved. Term. Obrab. Met., No. 6, 49–53 (2014).

  30. D. A. Konovalov, “Development of a technique for reconstructing the stress–strain curve of metallic materials from the diagrams of indentation of conical indenters,” Extended Abstract of Cand. (Eng.) Sci. Dissertation, Yekaterinburg, 2007.

  31. D. Konovalov and I. Veretennikova, “Studying the mechanical properties of a bimetallic composite, produced by explosion welding, under incremental plastic deformation,” Lett. Mater. 8 (2), 215–219 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were carried on the equipment of the Plastometry Testing Center for Collective Use at the Institute of Engineering Science of the Ural Branch, Russian Academy of Sciences (Yekaterinburg).

Funding

This work was supported by the Institute of Engineering Science of the Ural Branch, Russian Academy of Sciences, project no. AAAA-A18-118020790145-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Konovalov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, D.A., Veretennikova, I.A., Bykova, T.M. et al. Development of an Approach to Determining the Representative Volume Element of the Al/SiC Metal Matrix Composite Material Fabricated by Squeeze Casting. Russ. Metall. 2020, 738–745 (2020). https://doi.org/10.1134/S0036029520070101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520070101

Keywords:

Navigation