Skip to main content
Log in

A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The effect of the stress state on the fracture locus function of the 50 vol.% Al/SiC metal matrix composite at high temperature is studied. The value of fracture locus function is quantitatively characterized by the amount of shear strain accumulated prior to the moment of failure. Nondimensional invariant parameters are used as characteristics of the stress state, namely, the stress triaxiality k and the Lode-Nadai coefficient μ σ showing the form of the stress state. Besides conventional testing for tension, compression and torsion of smooth cylindrical specimens, the complex of mechanical tests includes a new type of testing, namely, that for bell-shaped specimens. These kinds of testing enable one to study fracture strain under monotonic deformation in the ranges μ σ  = 0 … + 1 and k = − 1.08...0 without using high-pressure technologies. The stress–strain state during specimen testing is here evaluated from the finite element simulation of testing in ANSYS. The tests were performed at a temperature of 300 °C and shear strain rate intensity Η = 0.1; 0.3; 0.5 1/s. The test results have offered a fracture locus, which can be used in models of damage mechanics to predict fracture of the material in die forging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hunt WH (2000) Particulate reinforced MMCs. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol. 3 (3.26). Elsevier, Amsterdam, pp 701–715

    Chapter  Google Scholar 

  2. Qu X, Zhang L, Wu M, Ren S (2011) Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci: Mater Int 21:189–197. doi:10.1016/S1002-0071(12)60029-X

    Article  Google Scholar 

  3. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28:319–334. doi:10.1007/BF02717141

    Article  Google Scholar 

  4. Han J, Hong C, Zhang X, Wang B (2005) Thermal shock resistance of TiB2-Cu interpenetrating phase composites. Compos Sci Technol 65:1711–1718. doi:10.1016/j.compscitech.2005.02.010

    Article  Google Scholar 

  5. Daehn GS, Breslin MC (2006) Co-continuous composite materials for friction and braking applications. JOM 58:87–91. doi:10.1007/s11837-006-0235-1

    Article  Google Scholar 

  6. Bridgman PW (1931) The physics of high pressure. G Bell and Sons, London

    Google Scholar 

  7. Bridgman PW (1952) Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure. McGraw-Hill, New York

    MATH  Google Scholar 

  8. Beresnev BI, Vereshagin LF, Ryabinin YN, Livshits LD (1963) Some problems of large plastic deformation of metals at high pressure. Pergamon press, New York

    Google Scholar 

  9. Kolmogorov VL, Shishmintsev LF (1966) Ductility of steel as a function of hydrostatic pressure. Phys Met Metallogr 21(6):97–101

    Google Scholar 

  10. Smirnov-Alyaev GA, Rozenberg VM (1956) The theory of metal deformation: the finite forming mechanics. Mashgiz. Leningrad department, Moscow, Leningrad, (In Russian)

  11. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35(2):363–371

    Article  Google Scholar 

  12. Kolmogorov VL, Shishmintsev VF, Matveev GA (1967) Ultimate deformability of metals tensile-tested to failure under hydrostatic pressure. Phys Met Metallogr 23(1):170–171

    Google Scholar 

  13. Kolmogorov VL, Bogatov AA, Migachev BA, Zudov EG, Freidenzon JE, Freidenzon ME (1977) Plasticity and fracture. Metallurgiya, Moscow (In Russian)

    Google Scholar 

  14. Clausing DP (1970) Effect of plastic strain state on ductility and toughness. Int J Fract Mech 6:71–85

    Article  Google Scholar 

  15. Lebedev AA, Pisarenko GS (1963) Collection. Problems of high temperature plasticity in mechanical engineering. Izd. AN USSR, Kiev, (In Russian)

  16. Kolmogorov VL, Bogatov AA, Shishmintsev VF, Belyaev VA, Mizhiritskii OI (1976) The investigation of hydrostatic pressure and stress state influence on the plasticity of metals. High Temp–High Pressures 8:675–676

    Google Scholar 

  17. Kolmogorov VL (1970) Stresses, strains, fracture. Metallurgiya, Moscow (In Russian)

    Google Scholar 

  18. Cao TS (2015) Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review. Int J Mater Form. doi:10.1007/s12289-015-1262-7

    Google Scholar 

  19. Chiantoni G, Bonora N, Ruggiero A (2010) Experimental study of the effect of triaxiality ratio on the formability limit diagram and ductile damage evolution in steel and high purity copper. Int J Mater Form 3:171–174. doi:10.1007/s12289-010-0734-z

    Article  Google Scholar 

  20. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096. doi:10.1016/j.ijplas.2007.09.004

    Article  MATH  Google Scholar 

  21. Lewandowski JJ, Liu C, Hunt WH (1989) Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A 107:241–255. doi:10.1016/0921-5093(89)90392-4

    Article  Google Scholar 

  22. Brechet Y, Embury JD, Tao S, Luo L (1991) Damage initiation in metal matrix composites. Acta Metall Mater 39:1781–1786. doi:10.1016/0956-7151(91)90146-R

    Article  Google Scholar 

  23. Liu DS, Manoharan M, Lewandowski JJ (1989) Effects of superimposed hydrostatic pressure on the fracture properties of particulate reinforced metal matrix composites. Scr Metall 23:253–256

    Article  Google Scholar 

  24. See KS, Dean TA (1997) The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs. J Mater Process Technol 69:58–67. doi:10.1016/s0924-0136(96)00040-4

    Article  Google Scholar 

  25. Hauert A, Rossoll A, Mortensen A (2010) Fracture of high volume fraction ceramic particle reinforced aluminium under multiaxial stress. Acta Mater 58:3895–3907. doi:10.1016/j.actamat.2010.03.037

    Article  Google Scholar 

  26. Smirnov SV, Nesterenko AV, Shveikin VP (2008) Deformability of molybdenum during the production of thin-wall pipes. Russ Metall 2008:425–433. doi:10.1134/S003602950805011X

    Article  Google Scholar 

  27. Konovalov AV (1984) Plotting of dynamic models of the plastic-deformation resistance of metals by identification theory methods. Russ Metall 1984:173–179

    Google Scholar 

  28. Speedy CB, Brown RF, Goodwin CC (1970) Control theory: identification and optimal control. Oliver and Boyd, Edinburgh

    MATH  Google Scholar 

  29. Smirnov AS, Konovalov AV, Muizemnek OY (2015) Modelling and simulation of strain resistance of alloys taking into account barrier effects. Diagn Res Mech Mater Struct 1:61–72. doi:10.17804/2410-9908.2015.1.061-072

    Google Scholar 

  30. Polukhin PI, Gun GYA, Galkin AM (1983) True stresses of metals and alloys. Metallurgiya, Moscow, (In Russian)

  31. Galkin AM (1990) Studying true stresses of alloys. WPCz, Czestochowa (In Polish)

    Google Scholar 

  32. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98. doi:10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  33. Smirnov SV, Shveikin VP (2009) Plasticity and deformability of carbon steels under metal forming. UrO RAN Publ, Ekaterinburg (In Russian)

    Google Scholar 

  34. Smirnov SV, Domilovskaya TV, Bogatov AA (1997) Definition of the form for kinetic equation of damage during the plastic deformation. In: Predeleanu M, Gilormini P (eds) Advanced methods in materials processing defects. Elsivier Science, Amsterdam

    Google Scholar 

  35. Smirnov SV, Domilovskaya TV (2003) Definition of the kinetic equation form for damage under the plastic deformation. Fatigue Fract Eng Mater Struct 26:373–379

    Article  Google Scholar 

  36. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J ACM 8:212–229. doi:10.1145/321062.321069

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Russian Science Foundation (grant No. 14-19-01358). The tests were performed on the equipment installed at the “Plastometriya” Collective Use Center affiliated to the Institute of Engineering Science, UB RAS. The calculations with the use of the ANSYS software were made by A Igumnov (Institute of Mathematics and Mechanics, UB RAS) on the URAN supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Vichuzhanin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S., Vichuzhanin, D., Nesterenko, A. et al. A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature. Int J Mater Form 10, 831–843 (2017). https://doi.org/10.1007/s12289-016-1323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1323-6

Keywords

Navigation