Skip to main content
Log in

Formation of Polyborates during Dimerization of the closo-Decaborate Anion and Isomerization of the Octadecahydroeicosaborate Anion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structures of cesium and tetraphenylphosphonium polyborates obtained in the course of mild oxidation of the closo-decaborate anion [B10H10]2– in water with a cerium(IV) salt to form Cs2[trans-B20H18] as the main product and in the course of long-term isomerization of the [trans-B20H18]2– anion under the action of UV irradiation to form (Ph4P)2[iso-B20H18] as the main product have been studied. The compounds have been isolated as solvates Cs[B5O6(OH)4]·2H2O and PPh4[B5O6(OH)4]·2DMF·H2O from the filtrates obtained after removing the target compounds from the reaction solutions. The formation of polyborates is explained by the processes of degradation of boron cluster anions in reaction solutions over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. L. Muetterties and W. H. Knoth, Polyhedral Boranes (Marcel Dekker, New York, 1968).

    Google Scholar 

  2. I. B. Sivaev, V. I. Bregadze, S. Sjöberg, et al., Collect. Czech. Chem. Commun. 87, 679 (2002).

    Article  Google Scholar 

  3. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Collect. Czech. Chem. Commun. 75, 1149 (2010).

    Article  CAS  Google Scholar 

  4. K. Yu. Zhizhin, A. P. Zhdanov, N. T. Kuznetsov, et al., Russ. J. Inorg. Chem. 55, 2089 (2010).

    Article  CAS  Google Scholar 

  5. S. E. Korolenko, A. S. Kubasov, L. V. Goeva, et al., Inorg. Chim. Acta 527, 120587 (2021). https://doi.org/10.1016/j.ica.2021.120587

    Article  CAS  Google Scholar 

  6. Y. Zhang, L. Yang, and L. Wang, Chem. Int. Ed. 58, 8145 (2019).

    Article  CAS  Google Scholar 

  7. S. E. Korolenko, K. P. Zhuravlev, V. I. Tsaryuk, et al., J. Lumin. 237, 118156 (2021). https://doi.org/10.1016/j.jlumin.2021.118156

    Article  CAS  Google Scholar 

  8. V. V. Avdeeva, E. A. Malinina, A. V. Churakov, et al., Polyhedron 169, 144 (2019). https://doi.org/10.1016/j.poly.2019.01.051

    Article  CAS  Google Scholar 

  9. V. V. Avdeeva, I. N. Polyakova, L. V. Goeva, et al., Russ. J. Inorg. Chem. 61, 302 (2016).

    Article  CAS  Google Scholar 

  10. E. A. Malinina, S. E. Korolenko, A. P. Zhdanov, et al., J. Clust. Chem. 32, 755 (2021). https://doi.org/10.1007/s10876-020-01840-5

    Article  CAS  Google Scholar 

  11. S. E. Korolenko, V. V. Avdeeva, E. A. Malinina, et al., Russ. J. Inorg. Chem. 66, 1350 (2021). https://doi.org/10.1134/S0036023621090047

    Article  CAS  Google Scholar 

  12. Y. Sadikin, E. Didelot, Z. Łodziana, and R. Černý, Dalton Trans. 47, 5843 (2018).

    Article  CAS  Google Scholar 

  13. Z. Zhang, Y. Zhang, Z. Li, et al., Eur. J. Inorg. Chem. 981 (2018).

  14. E. A. Malinina, I. K. Kochneva, V. V. Avdeeva, et al., Russ. J. Inorg. Chem. 64, 1210 (2019).

    Article  CAS  Google Scholar 

  15. A. H. Norman and A. Kaczmarczyk, Inorg. Chem. 13, 2316 (1974).

    Article  CAS  Google Scholar 

  16. A. E. Dziova, V. V. Avdeeva, I. N. Polyakova, et al., Dokl. Chem. 440, 253 (2011).

    Article  CAS  Google Scholar 

  17. V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, et al., Russ. J. Inorg. Chem. 58, 657 (2013).

    Article  CAS  Google Scholar 

  18. E. F. Safronova, V. V. Avdeeva, I. N. Polyakova, et al., Dokl. Chem. 452, 240 (2013).

    Article  CAS  Google Scholar 

  19. V. V. Avdeeva, A. V. Vologzhanina, L. V. Goeva, et al., Inorg. Chim. Acta 428, 154 (2015).

    Article  CAS  Google Scholar 

  20. V. V. Avdeeva, I. N. Polyakova, A. V. Churakov, et al., Polyhedron 162, 65 (2019).

    Article  CAS  Google Scholar 

  21. V. V. Avdeeva, E. A. Malinina, L. V. Goeva, et al., Dokl. Chem. 474, 141 (2017).

    Article  CAS  Google Scholar 

  22. J. Miao, Y. Nie, H. Chen, et al., Z. Naturforsch. 66B, 387 (2011).

    Article  Google Scholar 

  23. Y. Nie, J.-L. Miao, C.-H. Hu, et al., Polyhedron 31, 607 (2012).

    Article  CAS  Google Scholar 

  24. G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, et al., Russ. Chem. Rev. 87, 393 (2018). https://doi.org/10.1070/RCR4795

    Article  CAS  Google Scholar 

  25. S. I. Pechenyuk, D. P. Domonov, and A. N. Gosteva, Russ. J. Gen. Chem. 91, 1834 (2021). https://doi.org/10.1134/S1070363221090310

    Article  Google Scholar 

  26. V. V. Bardin, S. A. Prikhod’ko, M. M. Shmakov, et al., Russ. J. Gen. Chem. 90, 50 (2020). https://doi.org/10.1134/S1070363220010089

    Article  CAS  Google Scholar 

  27. A. P. Topnikova and E. L. Belokoneva, Russ. Chem. Rev. 88, 204 (2019). https://doi.org/10.1070/RCR4835

    Article  CAS  Google Scholar 

  28. V. V. Avdeeva, E. A. Malinina, A. V. Vologzhanina, et al., Inorg. Chim. Acta 509, 119693 (2020). https://doi.org/10.1016/j.ica.2020.119693

    Article  CAS  Google Scholar 

  29. H. C. Miller, N. E. Miller, E. L. Muetterties, et al., J. Am. Chem. Soc. 85, 3885 (1963). https://doi.org/10.1021/ja00906a033

    Article  CAS  Google Scholar 

  30. B. L. Chamberland and E. L. Muetterties, Inorg. Chem. 3, 1450 (1964). https://doi.org/10.1021/ic50020a025

    Article  CAS  Google Scholar 

  31. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015).

    Article  Google Scholar 

  32. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009).

    Article  CAS  Google Scholar 

  33. A. Kaczmarczyk, R. D. Dobrott, and W. N. Lipscomb, Proc. Nat. Acad. Sci. U.S.A. 48, 729 (1962).

    Article  CAS  Google Scholar 

  34. M. F. Hawthorne, R. L. Pilling, P. F. Stokely, and P. M. Garrett, J. Am. Chem. Soc. 85, 3704 (1963).

    Google Scholar 

  35. Z. B. Curtis, C. Young, R. Dickerson, and A. Kaczmarczyk, Inorg. Chem. 13, 1760 (1974).

    Article  CAS  Google Scholar 

  36. F. Li, K. Shelly, C. B. Knobler, and M. F. Hawthorne, Angew. Chem., Int. Ed. 37, 1865 (1998).

    Article  CAS  Google Scholar 

  37. V. V. Avdeeva, M. I. Buzin, E. A. Malinina, et al., CrystEngComm 17, 8870 (2015).

    Article  CAS  Google Scholar 

  38. V. V. Avdeeva, E. A. Malinina, K. Yu. Zhizhin, et al., J. Struct. Chem. 60, 692 (2019). https://doi.org/10.1134/S0022476619050020

    Article  CAS  Google Scholar 

  39. V. V. Avdeeva, A. S. Kubasov, S. E. Korolenko, et al., Russ. J. Inorg. Chem. 67, 8 (2022). https://doi.org/10.31857/S0044457X22050026

    Article  Google Scholar 

  40. Xuetao Xu, Kanyi Liang, and Yirou Lin, Z. Anorg. Allg. Chem. 640, 110 (2014).

    Article  CAS  Google Scholar 

  41. M. A. Beckett, S. J. Coles, and P. N. Horton, J. Cluster Sci. 28, 2087 (2017).

    Article  CAS  Google Scholar 

  42. Sa-Ying Li and Zhi-Hong Liu, J. Therm. Anal. Calorim. 126, 913 (2016).

    Article  CAS  Google Scholar 

  43. Yang Yang, DongSheng Fu, GuoFa Li, and Yun Zhang, Z. Anorg. Allg. Chem. 639 (2013).

  44. G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, et al., Russ. Chem. Rev. 87, 393 (2018). https://doi.org/10.1070/RCR4795

    Article  CAS  Google Scholar 

  45. S. E. Korolenko, L. V. Goeva, A. S. Kubasov, et al., Russ. J. Inorg. Chem. 65, 846 (2020). https://doi.org/10.1134/S0036023620060091

    Article  CAS  Google Scholar 

  46. I. B. Sivaev, Russ. J. Inorg. Chem. 65, 1854 (2020). https://doi.org/10.1134/S0036023620120165

    Article  CAS  Google Scholar 

  47. E. Yu. Matveev, I. V. Novikov, A. S. Kubasov, et al., Russ. J. Inorg. Chem. 66, 187 (2021). https://doi.org/10.1134/S0036023621020121

    Article  CAS  Google Scholar 

  48. I. N. Klyukin, A. V. Kolbunova, N. A. Selivanov, et al., Russ. J. Inorg. Chem. 66, 1798 (2021). https://doi.org/10.1134/S003602362112007X

    Article  CAS  Google Scholar 

  49. A. V. Burdenkova, A. P. Zhdanov, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 66, 1616 (2021). https://doi.org/10.1134/S0036023621110036

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Analytical studies were carried out at the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute RAS within the framework of the State Assignment of the Kurnakov Institute RAS.

Funding

The work was carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Avdeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubasov, A.S., Novikov, I.V., Starodubets, P.A. et al. Formation of Polyborates during Dimerization of the closo-Decaborate Anion and Isomerization of the Octadecahydroeicosaborate Anion. Russ. J. Inorg. Chem. 67, 984–991 (2022). https://doi.org/10.1134/S0036023622070130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070130

Keywords:

Navigation