Skip to main content
Log in

Metal-Promoted Exopolyhedral Substitution of Terminal Hydrogen Atoms in the Closo-Decaborate Anion [B10H10]2– in the Presence of Copper(II): Formation of the Substituted Derivative [2-B10H9OH]2–

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Copper(II) complexation of the [B10H10]2– anion has been studied in the presence of 2,2′-bipyridyl (bipy) in organic solvents. The reaction between CuCl, bipy, and (Et3NH)[Ag[B10H10]] in DMF leads to copper(II) complex [Cu2(bipy)4(µ-CO3)][B10H10]·2DMF·H2O. The copper complexation reaction has been performed under the redox conditions Cu(I)  → Cu(II) in the presence of silver(I) compounds. When [Cu2(bipy)4(µ-CO3)][B10H10]·2DMF·H2O has been heated in DMSO, the monosubstituted derivative [2-B10H9OH]2– has been isolated as complex [Cu2(bipy)4(µ-CO3)][2-B10H10O0.17]·2DMSO·H2O consisting of the [B10H10]2– anion and its monosubstituted derivative [2-B10H9OH]2– cocrystallized in the 0.83:0.17 ratio. The metal-promoted process of exopolyhedral substitution of terminal hydrogen atoms in the [B10H10] anion in the presence of Cu(II) compounds has been discussed. Complexes synthesized have been studied by elemental analysis, IR, 1H and 11B NMR spectroscopy; the X-ray diffraction studies were performed for [Cu2(bipy)4(µ-CO3)][B10H10]·2DMF·H2O and [Cu2(bipy)4(µ-CO3)][2-B10H10O0.17]·2DMSO·H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. K. M. Krishnan Fundamentals and Applications of Magnetic Materials (Oxford University Press, Oxford, 2016).

    Google Scholar 

  2. E. L. Muetterties and W. H. Knoth Polyhedral Boranes (Dekker, New York, 1968).

    Google Scholar 

  3. N. N. Greenwood and A. Earnshaw Chemistry of the Elements, 2nd ed (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  4. Boron Science: New Technologies and Applications, ed. by N. S. Hosmane (CRC Press, Boca Raton, 2012).

  5. R. N. Grimes Carboranes, 3rd ed (Academic Press, US, 2016).

    Google Scholar 

  6. M. Scholz and E. Hey-Hawkins (2011). Chem. Rev. 111, 7035.

    CAS  PubMed  Google Scholar 

  7. N. S. Hosmane and R. Eagling Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine (World Scientific, Singapore, 2019).

    Google Scholar 

  8. C. Viñas and F. Teixidor (2013). Future. Med. Chem. 5, 617.

    Google Scholar 

  9. R. Núñez, I. Romero, F. Teixidor, and C. Viñas (2016). Chem. Soc. Rev. 45, 5147.

    PubMed  Google Scholar 

  10. J. Poater, M. Solà, C. Viñas, and F. Teixidor (2014). Angew. Chem. Int. Ed. 53, 12191.

    CAS  Google Scholar 

  11. R. B. King (2001). Chem. Rev. 101, 1119.

    CAS  PubMed  Google Scholar 

  12. Z. Chen and R. B. King (2005). Chem. Rev. 105, 3613.

    CAS  PubMed  Google Scholar 

  13. K Yu Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov (2010). Russ. J. Inorg. Chem. 55, 2089.

    CAS  Google Scholar 

  14. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal (2010). Collect. Czech. Chem. Commun. 75, 1149.

    CAS  Google Scholar 

  15. I. B. Sivaev, V. I. Bregadze, and S. Sjöberg (2002). Collect. Czech. Chem. Commun. 67, 679.

    CAS  Google Scholar 

  16. V. V. Avdeeva, E. A. Malinina, I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov (2016). Crystals 6, 60.

    Google Scholar 

  17. E. A. Malinina, V. V. Avdeeva, L. V. Goeva, and N. T. Kuznetsov (2010). Russ. J. Inorg. Chem. 55, 2148.

    CAS  Google Scholar 

  18. V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov (2017). Russ. J. Inorg. Chem. 62, 1673.

    CAS  Google Scholar 

  19. L. N. Goswami, L. Ma, Sh Chakravarty, Q. Cai, S. S. Jalisatgi, and M. F. Hawthorne (2013). Inorg. Chem. 52, 1694.

    CAS  PubMed  Google Scholar 

  20. J. Plesek (1992). Chem. Rev. 92, 269.

    CAS  Google Scholar 

  21. I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov (2002). Russ. Chem. Bull. 51, 1362.

    CAS  Google Scholar 

  22. I. B. Sivaev and V. I. Bregadze (2009). Eur. J. Inorg. Chem. 11, 1433.

    Google Scholar 

  23. F. Teixidor, C. Vinas, and A. Demonceau (2003). Pure Appl. Chem. 75, 1305.

    CAS  Google Scholar 

  24. I. N. Klyukin, A. P. Zhdanov, A. Y. Bykov, V. M. Retivov, K Yu Zhizhin, and N. T. Kuznetsov (2018). Russ. J. Inorg. Chem. 63, 213.

    CAS  Google Scholar 

  25. A. V. Prikaznov, V. I. Bragin, M. N. Davydova, I. B. Sivaev, and V. I. Bregadze (2007). Collect. Czech. Chem. Commun. 72, 1689.

    CAS  Google Scholar 

  26. I. N. Klyukin, A. S. Novikov, A. P. Zhdanov, K Yu Zhizhin, and N. T. Kuznetsov (2019). Russ. J. Inorg. Chem. 64, 1825.

    CAS  Google Scholar 

  27. K Yu Zhizhin, O. O. Vovk, E. A. Malinina, V. N. Mustyatsa, K Yu Zhizhin, and N. T. Kuznetsov (2005). Russ. J. Inorg. Chem. 50, 243.

    CAS  Google Scholar 

  28. I. N. Klyukin, V. V. Voinova, N. A. Selivanov, A. P. Zhdanov, K Yu Zhizhin, and N. T. Kuznetsov (2018). Russ. J. Inorg. Chem. 63, 1546.

    CAS  Google Scholar 

  29. E. F. Safronova, V. V. Avdeeva, I. N. Polyakova, A. V. Vologzhanina, L. V. Goeva, E. A. Malinina, and N. T. Kuznetsov (2013). Doklady Chem. 452, 240.

    CAS  Google Scholar 

  30. V. V. Avdeeva, A. V. Vologzhanina, L. V. Goeva, E. A. Malinina, and N. T. Kuznetsov (2015). Inorg. Chim. Acta 428, 154.

    CAS  Google Scholar 

  31. V. V. Avdeeva, I. N. Polyakova, A. V. Churakov, A. V. Vologzhanina, E. A. Malinina, K Yu Zhizhin, and N. T. Kuznetsov (2019). Polyhedron 162, 65.

    CAS  Google Scholar 

  32. V. V. Avdeeva, E. A. Malinina, A. V. Vologzhanina, I. B. Sivaev, and N. T. Kuznetsov (2020). Inorg. Chim. Acta 509, 119693.

    CAS  Google Scholar 

  33. H. Abbas, C. Streb, A. L. Pickering, A. R. Neil, D.-L. Long, and L. Cronin (2008). Cryst. Growth Des. 8, 635.

    CAS  Google Scholar 

  34. V. V. Avdeeva, E. A. Malinina, A. V. Churakov, I. N. Polyakova, and N. T. Kuznetsov (2019). Polyhedron 169, 144.

    CAS  Google Scholar 

  35. I. K. Kochneva, V. V. Avdeeva, L. V. Goeva, E. A. Malinina, and N. T. Kuznetsov (2018). Russ. J. Inorg. Chem. 63, 591.

    CAS  Google Scholar 

  36. E. A. Malinina, I. K. Kochneva, I. N. Polyakova, V. V. Avdeeva, G. A. Buzanov, N. N. Efimov, E. A. Ugolkova, V. V. Minin, and N. T. Kuznetsov (2018). Inorg. Chim. Acta. 479, 249.

    CAS  Google Scholar 

  37. E. A. Malinina, I. K. Kochneva, I. N. Polyakova, V. V. Avdeeva, L. V. Goeva, V. V. Minin, E. A. Ugolkova, and N. T. Kuznetsov (2018). Inorg. Chim. Acta. 477, 284.

    CAS  Google Scholar 

  38. E. A. Malinina, I. K. Kochneva, V. V. Avdeeva, L. V. Goeva, A. S. Kubasov, and N. T. Kuznetsov (2019). Russ. J. Inorg. Chem. 64, 1210.

    CAS  Google Scholar 

  39. A. E. Dziova, V. V. Avdeeva, I. N. Polyakova, O. N. Belousova, E. A. Malinina, and N. T. Kuznetsov (2011). Doklady Chem. 440, 253.

    CAS  Google Scholar 

  40. V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, L. V. Goeva, E. A. Malinina, and N. T. Kuznetsov (2013). Russ. J. Inorg. Chem. 58, 657.

    CAS  Google Scholar 

  41. V. V. Drozdova, E. A. Malinina, O. N. Belousova, I. N. Polyakova, and N. T. Kuznetsov (2008). Russ. J. Inorg. Chem. 53, 1024.

    Google Scholar 

  42. APEX2, Version 2014.11-0, Bruker AXS Inc. (Madison, Wisconsin, USA).

  43. SADABS, Version 2014/5, Bruker AXS Inc. (Madison, Wisconsin, USA).

  44. SAINT, Version V8.34A, Bruker AXS Inc. (Madison, Wisconsin, USA).

  45. G. M. Sheldrick (1990). Acta Cryst. A46, 467.

    CAS  Google Scholar 

  46. SHELXTL, Version 6.14, Bruker AXS Inc. (Madison, Wisconsin, USA).

  47. A. E. Dziova, V. V. Avdeeva, I. N. Polyakova, E. A. Malinina, A. V. Rotov, N. N. Efimov, E. A. Ugolkova, V. V. Minin, and N. T. Kuznetsov (2013). Russ. J. Inorg. Chem. 58, 1527.

    CAS  Google Scholar 

  48. V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, E. A. Malinina, L. V. Goeva, and N. T. Kuznetsov (2015). Inorg. Chim. Acta 430, 74.

    CAS  Google Scholar 

  49. A. V. Vologzhanina, A. A. Korlyukov, V. V. Avdeeva, I. N. Polyakova, E. A. Malinina, and N. T. Kuznetsov (2013). J. Phys. Chem. A 117, 13138.

    CAS  PubMed  Google Scholar 

  50. V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, L. V. Goeva, E. A. Malinina, and N. T. Kuznetsov (2011). Dokl Chem. 437, 79.

    CAS  Google Scholar 

  51. A. E. Dziova, V. V. Avdeeva, I. N. Polyakova, E. A. Malinina, A. V. Rotov, N. N. Efimov, V. V. Minin, and N. T. Kuznetsov (2012). Doklady Chem. 442, 1.

    CAS  Google Scholar 

  52. I. K. Kochneva, I. N. Polyakova, V. V. Avdeeva, N. N. Efimov, E. A. Ugolkova, V. V. Minin, E. A. Malinina, and N. T. Kuznetsov (2017). Doklady Chem. 474, 137.

    CAS  Google Scholar 

  53. V. V. Avdeeva, E. A. Malinina, K Yu Zhizhin, and N. T. Kuznetsov (2020). Russ. J. Inorg. Chem. 65, 335.

    CAS  Google Scholar 

Download references

Acknowledgments

The X-ray diffraction studies were performed by Irina Polyakova (deceased) at the Kurnakov Institute and were described by Dr. Sergey Nefedov (the Kurnakov Institute). The IR spectra of the compounds were measured by Ph. D. Lyudmila V. Goeva (the Kurnakov Institute).

Funding

The studies were performed within the framework of the State Assignment of the Kurnakov Institute (IGIC RAS) in the field of fundamental scientific research and was supported in part by the Russian Foundation for Basic Research (Russia), grant no. 20-03-00763. Synthesis of compounds was supported by the Council for Grants of the President of RF for State Support of scientific research performed by Young Russian Scientists (Grant MD-265.2019.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varvara V. Avdeeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinina, E.A., Korolenko, S.E., Zhdanov, A.P. et al. Metal-Promoted Exopolyhedral Substitution of Terminal Hydrogen Atoms in the Closo-Decaborate Anion [B10H10]2– in the Presence of Copper(II): Formation of the Substituted Derivative [2-B10H9OH]2–. J Clust Sci 32, 755–763 (2021). https://doi.org/10.1007/s10876-020-01840-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01840-5

Keywords

Navigation