Skip to main content
Log in

Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65 vol %) by a Supersonic Air Flow

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Porous HfB2–65 vol % SiC samples (porosity 34.5%) were produced by reactive hot pressing of HfB2–(SiO2–C) composite powder at 1800°C (heating rate 10 deg/min, holding duration 15 min) and 30 MPa. Using a high-temperature induction plasmatron, their resistance to oxidation by a supersonic dissociated air flow was studied (the heat fluxes in the course of the experiment were varied from 363 to 779 W/cm2). The observation of the temperature distribution over the surface of the sample during the experiment showed that a sharp increase in temperature from ~1770–1850 to ∼2600°C in the samples under investigation occurred at lower heat fluxes and shorter treatment times than that in denser HfB2–30 vol % SiC samples (porosity 9–11%). This indicated that increasing the density of the HfB2–SiC material and also increasing the silicon carbide content reduced the oxidation resistance. However, the fact that the studied sample withstood 37-min exposure to a high-enthalpy dissociated air flow (including 27 min at a surface temperature of 2560–2620°C) without destruction or complete oxidation makes it possible to assign it to ultra-high-temperature materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Because of the evaporation of the silicate glass layer and the appearance of porous, highly catalytically active, and low thermally conductive HfO2 on the surface [8, 15, 16, 7376, 83].

REFERENCES

  1. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). https://doi.org/10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  2. R. Savino, L. Criscuolo, G. D. Di Martino, and S. Mungiguerra, J. Eur. Ceram. Soc. 38, 2937 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.043

    Article  CAS  Google Scholar 

  3. K. S. Cissel and E. Opila, J. Am. Ceram. Soc. 101, 1765 (2018). https://doi.org/10.1111/jace.15298

    Article  CAS  Google Scholar 

  4. T. A. Parthasarathy, M. D. Petry, M. K. Cinibulk, et al., J. Am. Ceram. Soc. 96, 907 (2013). https://doi.org/10.1111/jace.12180

    Article  CAS  Google Scholar 

  5. X. Jin, R. He, X. Zhang, and P. Hu, J. Alloys Compd. 566, 125 (2013). https://doi.org/10.1016/j.jallcom.2013.03.067

    Article  CAS  Google Scholar 

  6. L. Silvestroni, S. Mungiguerra, D. Sciti, et al., Corros. Sci. 159, 108125 (2019). https://doi.org/10.1016/j.corsci.2019.108125

    Article  CAS  Google Scholar 

  7. F. Monteverde, R. Savino, M. De Stefano Fumo, and A. Di Maso, J. Eur. Ceram. Soc. 30, 2313 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.029

    Article  CAS  Google Scholar 

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). https://doi.org/10.1134/S0036023618040186

    Article  CAS  Google Scholar 

  9. H. Lv, H. Dong, Z. Wang, and X. Meng, Adv. Mater. Res. 211212, 270 (2011). https://doi.org/10.4028/www.scientific.net/AMR.211-212.270

    Article  CAS  Google Scholar 

  10. T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.026

    Article  CAS  Google Scholar 

  11. E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A 42a, 878 (2011). https://doi.org/10.1007/s11661-010-0540-8

    Article  CAS  Google Scholar 

  12. Y. Yang, M. Li, L. Xu, et al., Corros. Sci. 157, 87 (2019). https://doi.org/10.1016/j.corsci.2019.05.027

    Article  CAS  Google Scholar 

  13. N. K. Gopinath, G. Jagadeesh, and B. Basu, J. Am. Ceram. Soc. 102, 6925 (2019). https://doi.org/10.1111/jace.16548

    Article  CAS  Google Scholar 

  14. N. Li, P. Hu, P. F. Xing, and B. Ke, IOP Conf. Series: Mater. Sci. Eng. 479, 012067 (2019). https://doi.org/10.1088/1757-899X/479/1/012067

    Article  CAS  Google Scholar 

  15. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Sol–Gel Sci. Technol. 92, 386 (2019). https://doi.org/10.1007/s10971-019-05029-9

    Article  CAS  Google Scholar 

  16. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Eur. Ceram. Soc. 40, 1093 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.023

    Article  CAS  Google Scholar 

  17. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 64, 1697 (2019). https://doi.org/10.1134/S0036023619140079

    Article  CAS  Google Scholar 

  18. E. P. Simonenko, N. P. Simonenko, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65 (3) 446 (2020). https://doi.org/10.1134/S0036023620030146

  19. M. Ghassemi Kakroudi, M. Dehghanzadeh Alvari, M. Shahedi Asl, et al., Ceram. Int. 46, 3725 (2020). https://doi.org/10.1016/j.ceramint.2019.10.093

    Article  CAS  Google Scholar 

  20. Y. Kubota, Y. Arai, M. Yano, et al., J. Eur. Ceram. Soc. 39, 2812 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.010

    Article  CAS  Google Scholar 

  21. D. D. Nesmelov, I. D. Shabalkin, A. S. Lysenkov, and S. S. Ordan’yan, Refract. Ind. Ceram. 59, 514 (2019). https://doi.org/10.1007/s11148-01900264-7

    Article  CAS  Google Scholar 

  22. L. Xu, Y. Yang, S. Wang, et al., Mater. Chem. Phys. 223, 53 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.044

    Article  CAS  Google Scholar 

  23. S. K. Thimmappa, B. R. Golla, P. V. Bhanu, et al., Ceram. Int. 45, 9061 (2019). https://doi.org/10.1016/j.ceramint.2019.01.243

    Article  CAS  Google Scholar 

  24. Z. Nasiri and M. Mashhadi, Int. J. Refract. Met. Hard Mater. 78, 186 (2019). https://doi.org/10.1016/j.ijrmhm.2018.09.009

    Article  CAS  Google Scholar 

  25. D. Pham, J. H. Dycus, J. M. LeBeau, et al., J. Am. Ceram. Soc. 102, 757 (2019). https://doi.org/10.1111/jace.15911

    Article  CAS  Google Scholar 

  26. D. Bannykh, A. Utkin, and N. Baklanova, Int. J. Refract. Met. Hard Mater. 84, 105023 (2019). https://doi.org/10.1016/j.ijrmhm.2019.105023

    Article  CAS  Google Scholar 

  27. X. Yan, X. Jin, P. Li, et al., Ceram. Int. 45, 16707 (2019). https://doi.org/10.1016/j.ceramint.2019.05.151

    Article  CAS  Google Scholar 

  28. B. Nayebi, Z. Ahmadi, M. Shahedi Asl, et al., J. Alloys Compd. 805, 725 (2019). https://doi.org/10.1016/j.jallcom.2019.07.117

    Article  CAS  Google Scholar 

  29. E. Ghasali and M. Shahedi Asl, Ceram. Int. 44, 18078 (2018). https://doi.org/10.1016/j.ceramint.2018.07.011

    Article  CAS  Google Scholar 

  30. A. Purwar, V. Thiruvenkatam, and B. Basu, J. Am. Ceram. Soc. 100, 4860 (2017). https://doi.org/10.1111/jace.15001

    Article  CAS  Google Scholar 

  31. A. Purwar, R. Mukherjee, K. Ravikumar, et al., J. Ceram. Soc. Jpn. 124, 393 (2016). https://doi.org/10.2109/jcersj2.15260

    Article  CAS  Google Scholar 

  32. B. Mohammadpour, Z. Ahmadi, M. Shokouhimehr, and M. Shahedi Asl, Ceram. Int. 45, 4262 (2019). https://doi.org/10.1016/j.ceramint.2018.11.098

    Article  CAS  Google Scholar 

  33. R. Hassan, S. Omar, and K. Balani, Int. J. Refract. Met. Hard Mater. 84, 105041 (2019). https://doi.org/10.1016/j.ceramint.2018.11.098

    Article  CAS  Google Scholar 

  34. A. Nisar, M. M. Khan, and K. Balani, Ceram. Int. 45, 6198 (2019). https://doi.org/10.1016/j.ceramint.2018.12.097

    Article  CAS  Google Scholar 

  35. M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, Ceram. Int. 42, 1950 (2016). https://doi.org/10.1016/j.ceramint.2015.09.165

    Article  CAS  Google Scholar 

  36. Y. Cheng, Y. Lyu, S. Zhou, et al., Ceram. Int. 45, 4113 (2019). https://doi.org/10.1016/j.ceramint.2018.10.250

    Article  CAS  Google Scholar 

  37. Y. Cheng, L. Yang, W. Han, et al., J. Am. Ceram. Soc. 102, 2041 (2019). https://doi.org/10.1111/jace.16068

    Article  CAS  Google Scholar 

  38. B. Zhang, L. Cheng, Y. Lu, and Q. Zhang, Carbon 139, 1020 (2018). https://doi.org/10.1016/j.carbon.2018.07.067

    Article  CAS  Google Scholar 

  39. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 63, 1772 (2018). https://doi.org/10.1134/S003602361814005X

    Article  CAS  Google Scholar 

  40. K. Gui, P. Hu, W. Hong, et al., J. Alloys Compd. 706, 16 (2017). https://doi.org/10.1016/j.jallcom.2017.02.227

    Article  CAS  Google Scholar 

  41. Z. Balak, M. Azizieh, H. Kafashan, et al., Mater. Chem. Phys. 196, 333 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.062

    Article  CAS  Google Scholar 

  42. C. Fang, P. Hu, S. Dong, et al., J. Eur. Ceram. Soc. 39, 2805 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.038

    Article  CAS  Google Scholar 

  43. J.-P. Zhang, J.-L. Qu, and Q.-G. Fu, Corros. Sci. 151, 87 (2019). https://doi.org/10.1016/j.corsci.2019.02.015

    Article  CAS  Google Scholar 

  44. J. Binner, M. Porter, B. Baker, et al., Int. Mater. Rev. (2019). https://doi.org/10.1080/09506608.2019.165200

  45. S. Mungiguerra, G. D. Di Martino, A. Cecere, et al., Corros. Sci. 149, 18 (2019). https://doi.org/10.1016/j.corsci.2018.12.039

    Article  CAS  Google Scholar 

  46. L. Silvestroni, A. Vinci, S. Failla, et al., J. Eur. Ceram. Soc. 39, 2771 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.031

    Article  CAS  Google Scholar 

  47. Y. Arai, R. Inoue, K. Goto, and Y. Kogo, Ceram. Int. 45, 14481 (2019). https://doi.org/10.1016/j.ceramint.2019.05.065

    Article  CAS  Google Scholar 

  48. F. Sadegh Moghanlou, M. Vajdi, A. Motallebzadeh, et al., Ceram. Int. 45, 17742 (2019). https://doi.org/10.1016/j.ceramint.2019.05.344

    Article  CAS  Google Scholar 

  49. W. Xie, Z. Peng, S. Meng, et al., Compos. Pt. A: Appl. Sci. Manuf. 99, 157 (2017). https://doi.org/10.1016/j.compositesa.2017.03.034

    Article  CAS  Google Scholar 

  50. L. Silvestroni, D. Sciti, L. Zoli, et al., Renew. Energy 133, 1257 (2019). https://doi.org/10.1016/j.renene.2018.08.036

    Article  CAS  Google Scholar 

  51. E. Sani, L. Mercatelli, M. Meucci, et al., Renew. Energy 91, 340 (2016). https://doi.org/10.1016/j.renene.2016.01.068

    Article  Google Scholar 

  52. C. Musa, R. Licheri, R. Orru, et al., Solar Energy 169, 111 (2018). https://doi.org/10.1016/j.solener.2018.04.036

    Article  CAS  Google Scholar 

  53. E. Sani, L. Mercatelli, J.-L. Sans, et al., Opt. Mater. 36, 163 (2013). https://doi.org/10.1016/j.optmat.2013.08.020

    Article  CAS  Google Scholar 

  54. E. Sani, E. Landi, D. Sciti, and V. Medri, Sol. Energy Mater. Sol. Cells 144, 608 (2016). https://doi.org/10.1016/j.solmat.2015.09.068

    Article  CAS  Google Scholar 

  55. Q. Lonne, N. Glandut, and P. Lefort, J. Eur. Ceram. Soc. 32, 955 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.027

    Article  CAS  Google Scholar 

  56. D. S. A. Mahmod, A. A. Khan, M. A. Munot, et al., IOP Conf. Ser. Mater. Sci. Eng. 146, 012002 (2016). https://doi.org/10.1088/1757899X/146/1/012002

  57. J. Du, X. Zhang, C. Hong, and W. Han, Ceram. Int. 39, 953 (2013). https://doi.org/10.1016/j.ceramint.2012.07.012

    Article  CAS  Google Scholar 

  58. B. Zhao, Y. Jiang, B. Yang, et al., Mater. Res. Bull. 51, 19 (2014). https://doi.org/10.1016/j.materresbull.2013.11.053

    Article  CAS  Google Scholar 

  59. Y. Qi, G. Chen, Y. Cheng, et al., J. Ceram. Soc. Jpn. 127, 469 (2019). https://doi.org/10.2109/jcersj2.18207

    Article  CAS  Google Scholar 

  60. X. Jin, X. Zhang, J. Han, et al., Mater. Sci. Eng. A. 588, 175 (2013). https://doi.org/10.1016/j.msea.2013.09.046

    Article  CAS  Google Scholar 

  61. X. Jin, L. Dong, H. Xu, et al., Ceram. Int. 42, 9051 (2016). https://doi.org/10.1016/j.ceramint.2016.02.164

    Article  CAS  Google Scholar 

  62. X. Jin, L. Dong, Q. Li, et al., Ceram. Int. 42, 13309 (2016). https://doi.org/10.1016/j.ceramint.2016.05.040

    Article  CAS  Google Scholar 

  63. Z. Wu, Z. Wang, G. Shi, and J. Sheng, Compos. Sci. Technol. 71, 1501 (2011). https://doi.org/10.1016/j.compscitech.2011.06.008

    Article  CAS  Google Scholar 

  64. Z. Wang, P. Zhou, and Z. Wu, Corros. Sci. 98, 233 (2015). https://doi.org/10.1016/j.corsci.2015.05.035

    Article  CAS  Google Scholar 

  65. X. Jin, L. Chen, L. Dong, et al., Adv. Appl. Ceram. 119, 15 (2020). https://doi.org/10.1080/17436753.2019.1678854

    Article  CAS  Google Scholar 

  66. D. S. A. Mahmod, N. Glandut, A. A. Khan, and J.‑C. Labbe, Appl. Surf. Sci. 357, 1982 (2015). https://doi.org/10.1016/j.apsusc.2015.09.164

    Article  CAS  Google Scholar 

  67. X. Feng, X. Wang, Y. Liu, et al., J. Eur. Ceram. Soc. 38, 5311 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.041

    Article  CAS  Google Scholar 

  68. L. Silvestroni, S. Failla, I. Neshpor, and O. Grigoriev, J. Eur. Ceram. Soc. 38, 2467 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.01.025

    Article  CAS  Google Scholar 

  69. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Russ. J. Inorg. Chem. 63, 1 (2018). https://doi.org/10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  70. O. N. Grigoriev, A. D. Panasyuk, I. A. Podchernyaeva, et al., Powder Metall. Met. Ceram. 57, 71 (2018). https://doi.org/10.1007/s11106-018-9956-2

    Article  CAS  Google Scholar 

  71. M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, J. Mater. Sci. 39, 5887 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77

    Article  CAS  Google Scholar 

  72. F. Monteverde, A. Cecere, and R. Savino, J. Eur. Ceram. Soc. 37, 2325 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.018

    Article  CAS  Google Scholar 

  73. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1484 (2018). https://doi.org/10.1134/S0036023618110177

    Article  CAS  Google Scholar 

  74. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 64, 1681 (2019). https://doi.org/10.1134/S0036023619130084

    Article  CAS  Google Scholar 

  75. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1345 (2018). https://doi.org/10.1134/S0036023618100170

    Article  CAS  Google Scholar 

  76. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). https://doi.org/10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  77. W. Xie, Z. Peng, H. Jin, et al., J. Wuhan Univ. Technol., Mater. Sci. Ed. 33, 375 (2018). https://doi.org/10.1007/s11595-018-1832-9

    Article  CAS  Google Scholar 

  78. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1483 (2016). https://doi.org/10.1134/S0036023616120172

    Article  CAS  Google Scholar 

  79. W. Wong-Ng and C. R. Hubbard, Powder Diffr. 2, 242 (1987). https://doi.org/10.1017/S0885715600012884

    Article  CAS  Google Scholar 

  80. T. Kawamura, Mineral J. 4, 333 (1965). https://doi.org/10.2465/minerj1953.4.333

    Article  CAS  Google Scholar 

  81. H. Holleck, J. Nucl. Mater. 21, 14 (1967). https://doi.org/10.1016/0022-3115(67)90724-6

    Article  CAS  Google Scholar 

  82. C. L. Burdick and E. A. Owen, J. Am. Chem. Soc. 40, 1749 (1918). https://doi.org/10.1021/ja02245a001

    Article  CAS  Google Scholar 

  83. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). https://doi.org/10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  84. J. Marschall, D. Pejaković, W. G. Fahrenholtz, et al., J. Thermophys. Heat Transfer 26, 559 (2012). https://doi.org/10.2514/1.T3798

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 17-23-20181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Gordeev, A.N. et al. Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65 vol %) by a Supersonic Air Flow. Russ. J. Inorg. Chem. 65, 606–615 (2020). https://doi.org/10.1134/S0036023620040191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620040191

Keywords:

Navigation