Skip to main content
Log in

Impact of a Supersonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new method to produce ultra-high-temperature ceramic composites under rather mild conditions (1700°C, 30 MPa, treatment time 15 min) was applied to synthesize a relatively dense (ρrel = 84.5%) HfB2–30 vol % SiC material containing nanocrystalline silicon carbide (average crystallite size ∼37 nm). The elemental and phase compositions, microstructure, and some mechanical properties of this material and also its thermal behavior in an air flow within the temperature range 20–1400°C were investigated. Using a high-frequency induction plasmatron, a study was made of the effect of a supersonic dissociated air flow on the surface of the produced ultra-high-temperature ceramic composite shaped as a flat-end cylindrical sample installed into a copper water-cooled holder. On 40-min exposure of the sample to the supersonic dissociated air flow, the sample did not fail, and the weight loss was 0.04%. Although the heat flux was high, the temperature on the surface did not exceed 1400–1590°C, which could be due to the heat transfer from the sample to the water-cooled model. The thickness of the oxidized layer under these conditions was 10–20 μm; no SiC-depleted region formed. Specific features of the microstructure of the oxidized surface layer of the sample were noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). doi https://doi.org/10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  2. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). doi https://doi.org/10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  3. R. Savino, L. Criscuolo, G. D. Di Martino, et al., J. Eur. Ceram. Soc. (2018) (in press). doi https://doi.org/10.1016/j.jeurceramsoc.2017.12.043

    Google Scholar 

  4. L. Silvestroni, H.-J. Kleebe, W. G. Fahrenholtz, and J. Watts, Sci. Rep. 7, Art. no. 40730 (2017). doi https://doi.org/10.1038/srep40730

  5. K. S. Cissel and E. Opila, J. Am. Ceram. Soc. 101, 1765 (2018). doi https://doi.org/10.1111/jace.15298

    Article  CAS  Google Scholar 

  6. M. Shahedi Asl, Ceram. Int. 43, 15047 (2017). doi https://doi.org/10.1016/j.ceramint.2017.08.030

    Article  CAS  Google Scholar 

  7. J. Zou, V. Rubio, and J. Binner, Acta Mater. 133, 293 (2017). doi https://doi.org/10.1016/j.actamat.2017.05.033

    Article  CAS  Google Scholar 

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). doi https://doi.org/10.1134/S0036023618040186

    Article  CAS  Google Scholar 

  9. F. Monteverde, A. Cecere, and R. Savino, J. Eur. Ceram. Soc. 37, 2325 (2017). doi https://doi.org/10.1016/j.jeurceramsoc.2017.01.018

    Article  CAS  Google Scholar 

  10. T. A. Parthasarathy, M. D. Petry, M. K. Cinibulk, et al., J. Am. Ceram. Soc. 96, 907 (2013). doi https://doi.org/10.1111/jace.12180

    Article  CAS  Google Scholar 

  11. A. Cecere, R. Savino, C. Allouis, and F. Monteverde, Int. J. Heat Mass Transfer 91, 747 (2015). doi https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.029

    Article  CAS  Google Scholar 

  12. X. Jin, R. He, X. Zhang, and P. Hu, J Alloys Compd. 566, 125 (2013). doi https://doi.org/10.1016/j.jallcom.2013.03.067

    Article  CAS  Google Scholar 

  13. F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012). doi https://doi.org/10.1111/j.1551-2916.2012.05226.x

    Article  CAS  Google Scholar 

  14. X. Zhang, P. Hu, J. Han, and S. Meng, Compos. Sci. Technol. 68, 1718 (2008). doi https://doi.org/10.1016/j.compscitech.2008.02.009

    Article  CAS  Google Scholar 

  15. F. Monteverde, R. Savino, M. De Stefano Fumo, and A. Di Maso, J. Eur. Ceram. Soc. 30, 2313 (2010). doi https://doi.org/10.1016/j.jeurceramsoc.2010.01.029

    Article  CAS  Google Scholar 

  16. R. W. Olesinski and G. J. Abaschian, Bull. Alloy Phase Diagrams 5, 486 (1984).

    Article  Google Scholar 

  17. H. Bittermann and P. Rogl, J. Phase Equilib. 18, 24 (1997).

    Article  CAS  Google Scholar 

  18. H. Duschanek and P. Rogl, Phase Diagrams of Ternary Metal–Boron–Carbon Systems, Ed. by G. Effenberg (ASM International, Materials Park, OH, Stuttgart, 1998), p.445.

  19. A. Vinci, L. Zoli, E. Landi, and D. Sciti, Corros. Sci. 123, 129 (2017). doi https://doi.org/10.1016/j.corsci.2017.04.012

    Article  CAS  Google Scholar 

  20. D. Sciti, R. Savino, and L. Silvestroni, J. Eur. Ceram. Soc. 32, 1837 (2012). doi https://doi.org/10.1016/j.jeurceramsoc.2012.01.019

    Article  CAS  Google Scholar 

  21. K. Gui, P. Hu, W. Hong, et al., J. Alloys Compd. 706, 16 (2017). doi https://doi.org/10.1016/j.jallcom.2017.02.227

    Article  CAS  Google Scholar 

  22. A. Nisar and K. Balani, Coatings 7, 110/1 (2017). doi https://doi.org/10.3390/coatings7080110

    CAS  Google Scholar 

  23. A. Nisar, S. Ariharan, and K. Balani, Ceram. Int. 43, 13483 (2017). doi https://doi.org/10.1016/j.ceramint.2017.07.053

    Article  CAS  Google Scholar 

  24. A. Nisar, S. Ariharan, T. Venkateswaran, et al., Carbon 111, 269 (2017). doi https://doi.org/10.1016/j.carbon.2016.10.002

    Article  CAS  Google Scholar 

  25. X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015). doi https://doi.org/10.1039/C5RA05922D

    Article  CAS  Google Scholar 

  26. B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). doi https://doi.org/10.1021/acsami.6b00822

    Article  CAS  PubMed  Google Scholar 

  27. M. Shahedi Asl and M. Ghassemi Kakroudi, Mater. Sci. Eng., A 625, 385 (2015). doi https://doi.org/10.1016/j.msea.2014.12.028

    Article  CAS  Google Scholar 

  28. X. Chen, X. Peng, Z. Wei, et al., Mater. Des. 126, 91 (2017). doi https://doi.org/10.1016/j.matdes.2017.04.001

    Article  CAS  Google Scholar 

  29. I. Farahbakhsh, Z. Ahmadi, and M. Shahedi Asl, Ceram. Int. 43, 8411 (2017). doi https://doi.org/10.1016/j.ceramint.2017.03.188

    Article  CAS  Google Scholar 

  30. L. Wang, D. Kong, G. Fang, and J. Liang, Int. J. Appl. Ceram. Technol. 14, 31 (2017). doi https://doi.org/10.1111/ijac.12613

    Article  CAS  Google Scholar 

  31. S. Guo, J. Mater. Sci. 53, 4010 (2018). doi https://doi.org/10.1007/s10853-017-1850-7

    Article  CAS  Google Scholar 

  32. Z. Balak, M. Azizieh, H. Kafashan, et al., Mater. Chem. Phys. 196, 333 (2017). doi https://doi.org/10.1016/j.matchemphys.2017.04.062

    Article  CAS  Google Scholar 

  33. H.-B. Ma, J. Zou, J.-T. Zhu, et al., Acta Mater. 129, 159 (2017). doi https://doi.org/10.1016/j.actamat.2017.02.052

    Article  CAS  Google Scholar 

  34. Y. Kubota, M. Yano, R. Inoue, et al., J. Eur. Ceram. Soc. 38, 1095 (2018). doi https://doi.org/10.1016/j.jeurceramsoc.2017.11.024

    Article  CAS  Google Scholar 

  35. W. Hong, K. Gui, P. Hu, et al., J. Adv. Ceram. 6, 110 (2017). doi https://doi.org/10.1007/s40145-017-0223-7

    Article  CAS  Google Scholar 

  36. P. Hu, K. Gui, W. Hong, and X. Zhang, Mater. Lett. 200, 14 (2017). doi https://doi.org/10.1016/j.matlet.2017.04.089

    Article  CAS  Google Scholar 

  37. P. Hu, K. Gui, W. Hong, et al., J. Eur. Ceram. Soc. 37, 2317 (2017). doi https://doi.org/10.1016/j.jeurceramsoc.2017.02.008

    Article  CAS  Google Scholar 

  38. M. Mashhadi, H. Khaksari, and S. Safi, J. Mater. Res. Technol. 4, 416 (2015). doi https://doi.org/10.1016/j.jmrt.2015.02.004

    Article  CAS  Google Scholar 

  39. W. Han, S. Zhou, and J. Zhang, Ceram. Int. 40, 16665 (2014). doi https://doi.org/10.1016/j.ceramint.2014.08.028

    Article  CAS  Google Scholar 

  40. Z. Zhong, L. Yan, L. Liu, and B. Xu, Ceram. Int. 43, 3462 (2017). doi https://doi.org/10.1016/j.ceramint.2016.11.171

    Article  CAS  Google Scholar 

  41. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Russ. J. Inorg. Chem. 63, 1 (2018). doi https://doi.org/10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  42. N. T. Kuznetsov, V. G. Sevastyanov, E. P. Simonenko, and N. P. Simonenko, RU Patent No. 2618567 (May 4, 2017).

  43. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1345 (2018). doi https://doi.org/10.1134/S0036023618100170

    Article  CAS  Google Scholar 

  44. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). doi https://doi.org/10.1134/S003602361311017X

    Article  CAS  Google Scholar 

  45. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). doi https://doi.org/10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  46. W. Wong-Ng and C. Hubbard, Powder Diffr. 2, 242 (1987). doi https://doi.org/10.1017/S0885715600012884

    Article  CAS  Google Scholar 

  47. T. Kawamura, Mineral. J. 4, 333 (1965). doi https://doi.org/10.2465/minerj1953.4.333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Additional information

Original Russian Text © E.P. Simonenko, N.P. Simonenko, A.N. Gordeev, A.F. Kolesnikov, E.K. Papynov, O.O. Shichalin, K.Yu. Tal’skikh, E.A. Gridasova, V.A. Avramenko, V.G. Sevastyanov, N.T. Kuznetsov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 11, pp. 1465–1475.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Gordeev, A.N. et al. Impact of a Supersonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russ. J. Inorg. Chem. 63, 1484–1493 (2018). https://doi.org/10.1134/S0036023618110177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618110177

Keywords

Navigation