Skip to main content
Log in

Amplification and Sequencing of the Complete mtDNA of the Endangered Bitterling, Acheilognathus longipinnis (Cyprinidae), using Environmental DNA from Aquarium Water

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The Itasenpara bitterling, Acheilognathus longipinnis Regan, 1905, in the family Cyprinidae, is an endangered freshwater fish endemic to Japan. Designated a Japanese natural monument, research on A. longipinnis specimens is strictly restricted by law. In this study, we supplement existing genetic information and provide a resource for future studies that lack access to the biomaterials of this protected species. Using environmental DNA (eDNA) sourced from aquarium water, we amplified overlapping mitochondrial DNA (mtDNA) fragments of 4.9 to >8.0 kbps to obtain the complete mitochondrial genome of A. longipinnis. The 16 772 bp circular genome contains the 37 genes and two non-coding regions typically found in vertebrate mtDNAs. The mtDNA obtained has high nucleotide similarity with congeneric species. Moreover, the 12S rRNA and nd2 gene sequences of the mtDNA were identical to those previously reported for A. longipinnis, indicating that the mtDNA amplified from eDNA corresponds to that of A. longipinnis. This study represents a novel utilisation of museum and aquarium resources to obtain mtDNA data from a protected species. Our experimental procedure can potentially broaden the opportunities for obtaining long-sequence genetic information on very rare and/or legally sensitive organisms for which the development of a non-invasive eDNA survey procedure is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bylemans, J., Furlan, M.E., Hardy, M.C., et al., An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica), Ecol. Evol., 2017, vol. 8, pp. 646–655. https://doi.org/10.1111/2041-210X.12709

    Article  Google Scholar 

  2. Bylemans, J., Gleeson, D.M., Duncan, R.P., et al., A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes, Environ. DNA, 2019, vol. 1, pp. 402–414. https://doi.org/10.1002/edn3.41

    Article  Google Scholar 

  3. Chang, D.H., Li, F., Shao, K.T., et al., Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species, Mol. Phylogenet. Evol., 2014, vol. 81, pp. 182–194. https://doi.org/10.1016/j.ympev.2014.08.026

    Article  PubMed  Google Scholar 

  4. Deiner, K., Renshaw, M.A., Li, Y., et al., Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA, Methods Ecol. Evol., 2017, vol. 8, no. 15, pp. 1888–1898. https://doi.org/10.1111/2041-210X.12836

    Article  Google Scholar 

  5. Díaz-Ferguson, E.E. and Moyer, G.R., History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments, Rev. Biol. Trop., 2014, vol. 62, no. 4, pp. 1273–1284. https://doi.org/10.15517/rbt.v62i4.13231

    Article  PubMed  Google Scholar 

  6. Doi, H., Inui, R., Akamatsu, Y., et al, Environmental DNA analysis for estimating the abundance and biomass of stream fish, Freshwater Biol., 2017, vol. 62, pp. 30–39. https://doi.org/10.1371/journal.pone.0218823

    Article  CAS  Google Scholar 

  7. Ficetola, G.F., Miaud, C., Pompanon, F., and Taberlet, P., Species detection using environmental DNA from water samples, Biol. Lett., 2008, vol. 4, no. 4, pp. 423–425. https://doi.org/10.1098/rsbl.2008.0118

    Article  PubMed  PubMed Central  Google Scholar 

  8. Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, no. 5, pp. 294–299.

    CAS  PubMed  Google Scholar 

  9. Hasegawa, K., Kanao, S., Miyazaki, Y., et al., Acheilognathus longipinnis, in The IUCN Red List of Threatened Species, Version 04/2021, Glanz, 2019, no. e.T213A116034178. https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T213A-116034178.en

  10. Hunter, M.E., Ferrante, J.A., Meigs-Friend, G., and Ulmer, A., Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques, Sci. Rep., 2019, vol. 9, art. ID 5259. https://doi.org/10.1038/s41598-019-40977-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jerde, C.L., Mahon, A.R., Chadderton, W.L., and Lodge, D.M., “Sight-unseen” detection of rare aquatic species using environmental DNA, Conserv. Lett., 2011, vol. 4, no. 2, pp. 150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x

    Article  Google Scholar 

  12. Jo, T., Murakami, H., Masuda, R., et al., Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA, Mol. Ecol. Resour., 2017, vol. 17, no. 6, pp. e25–e33. https://doi.org/10.1111/1755-0998.12685

    Article  CAS  PubMed  Google Scholar 

  13. Jo, T., Murakami, H., Masuda, R., and Minamoto, T., Selective collection of long fragments of environmental DNA using larger pore size filter, Sci. Total Environ., 2020, vol. 735, art. ID 139462. https://doi.org/10.1016/j.scitotenv.2020.139462

    Article  CAS  PubMed  Google Scholar 

  14. Kimura, E., Itasenpara bitterling, in Final Report of the Survey of Freshwater Fish of the Second National Survey on the Natural Environment in Japan 1978, Tokyo: Nature Conserv. Soc. Jpn., 1980, pp. 69–74. http://61.125.139.78/reports/2-14/2-14.pdf.

    Google Scholar 

  15. Kitanishi, S., Nishio, M., Uehara, K., et al., Patterns of genetic diversity of mitochondrial DNA within captive population of the endangered Itasenpara bitterling: implications for a reintroduction program, Environ. Biol. Fish., 2013a, vol. 96, pp. 567–572. https://doi.org/10.1007/s10641-012-0044-z

    Article  Google Scholar 

  16. Kitanishi, S., Nishio, M., Sagawa, S., et al, Strong population genetic structure and its implications for the conservation and management of the endangered Itasenpara bitterling, Conserv. Genet., 2013b, vol. 14, pp. 901–906. https://doi.org/10.1007/s10592-013-0470-2

    Article  CAS  Google Scholar 

  17. Kurabayashi, A., Usuki, C., Mikami, N., et al., Complete nucleotide sequence of the mitochondrial genome of a Malagasy poison frog Mantella madagascariensis: evolutionary implications on mitochondrial genomes of higher anuran groups, Mol. Phylogenet. Evol., 2006, vol. 39, no. 1, pp. 223–236. https://doi.org/10.1016/j.ympev.2005.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Langlois, V.S., Allison, M.J., Bergman, L.C., et al., The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories, Environ. DNA, 2021, vol. 3, no. 3, pp. 519–527. https://doi.org/10.1002/edn3.164

    Article  Google Scholar 

  19. MacDonald, A.J. and Sarre, S.D., A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA, Mol. Ecol. Resour., 2017, vol. 17, no. 4, pp. 708–720. https://doi.org/10.1111/1755-0998.12618

    Article  CAS  PubMed  Google Scholar 

  20. Minamoto, T., Hayami, K., Sakata, M.K., and Imamura, A., Real-time PCR assays for environmental DNA detection of three salmonid fish in Hokkaido, Japan: application to winter surveys, Ecol. Res., 2018, vol. 34, no. 1, pp. 237–242. https://doi.org/10.1111/1440-1703.1018

    Article  CAS  Google Scholar 

  21. Ogawa, R., Aya, S., Kawai, N., et al., Re-introduction of the Itasenpara bitterling to the Yodo River in Osaka Prefecture, Japan, in Global Re-Introduction Perspectives: 2011. More Case Studies from Around the Globe, Soorae, P.S., Ed., Abu Dhabi, 2011, pp. 49–53. https://portals.iucn.org/library/sites/library/files/documents/2011-073.pdf.

  22. Peloso, P.L.V., Sturaro, M.J., Forlani, M.C., et al., Phylogeny, taxonomic revision, and character evolution of the genera Chiasmocleis and Syncope (Anura, Microhylidae) in Amazonia, with descriptions of three new species, Bull. Am. Mus. Nat. Hist., 2014, vol. 386, pp. 1–111. https://doi.org/10.1206/834.1

    Article  Google Scholar 

  23. Ponchel, F., Toomes, C., Bransfield, K., et al., Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions, BMC Biotechnol., 2003, vol. 3, art. ID 18. https://doi.org/10.1186/1472-6750-3-18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saitoh, K., Sado, T., Mayden, R.L., et al., Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences, J. Mol. Evol., 2006, vol. 63, no. 6, pp. 826–841. https://doi.org/10.1007/s00239-005-0293-y

    Article  CAS  PubMed  Google Scholar 

  25. Satoh, T.P., Miya, M., Mabuchi, K., and Nishida, M., Structure and variation of the mitochondrial genome of fishes, BMC Genomics, 2016, vol. 17, p. 719. https://doi.org/10.1186/s12864-016-3054-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schroeter, J.C., Maloy, A.P., Rees, C.B., and Bartron, M.L., Fish mitochondrial genome sequencing: expanding genetic resources to support species detection and biodiversity monitoring using environmental DNA, Conserv. Genet. Resour., 2019, vol. 12, pp. 433–446. https://doi.org/10.1007/s12686-019-01111-0

    Article  Google Scholar 

  27. Seymour, M., Edwards, F.K., Cosby, B.J., et al., Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning, Commun. Biol., 2021, vol. 4, art. ID 521. https://doi.org/10.1038/s42003-021-02031-2

    Article  CAS  Google Scholar 

  28. Smart, A.S., Tingley, R., Weeks, A.R., et al., Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader, Ecol. Appl., 2015, vol. 25, no. 7, pp. 1944–1952. https://doi.org/10.1890/14-1751.1

    Article  PubMed  Google Scholar 

  29. Smart, A.S., Weeks, A.R., van Rooyen, A.R., et al., Assessing the cost-efficiency of environmental DNA sampling, Methods Ecol. Evol., 2016, vol. 7, no. 11, pp. 1291–1298. https://doi.org/10.1111/2041-210X.12598

    Article  Google Scholar 

  30. Takahara, T., Minamoto, T., Yamanaka, H., et al., Estimation of fish biomass using environmental DNA, PLoS One, 2012, vol. 7, art. ID e35868. https://doi.org/10.1371/journal.pone.0035868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahara, T., Minamoto, T., and Doi, H., Using environmental DNA to estimate the distribution of an invasive fish species in ponds, PLoS One, 2013, vol. 8, art. ID e56584. https://doi.org/10.1371/journal.pone.0056584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. The eDNA Society, Environmental DNA sampling and experiment manual version 2.1, 2019. https://ednasociety.org/wp/wp-content/uploads/2020/09/eDNA_manual_Eng_v2_1_3b.pdf.

  33. Thomsen, P.F., Kielgast, J., Iversen, L.L., et al., Monitoring endangered freshwater biodiversity using environmental DNA, Mol. Ecol., 2012, vol. 21, no. 11, pp. 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x

    Article  CAS  PubMed  Google Scholar 

  34. Turner, C.R., Barnes, M.A., Xu, C.C.Y., et al., Particle size distribution and optimal capture of aqueous microbial eDNA, Methods Ecol. Evol., 2014, vol. 5, pp. 676–684. https://doi.org/10.1111/2041-210X.12206

    Article  Google Scholar 

  35. Uchii, K., Doi, H., and Minamoto, T., A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes, Mol. Ecol. Resour., 2016, vol. 16, no. 2, pp. 415–422. https://doi.org/10.1111/1755-0998.12460

    Article  CAS  PubMed  Google Scholar 

  36. Venter, J.C., Remington, K., Heidelberg, J.F., et al. Environmental genome shotgun sequencing of the Sargasso Sea, Science, 2004, vol. 304, no. 5667, pp. 66–74. https://doi.org/10.1126/science.1093857

    Article  PubMed  Google Scholar 

  37. Yamanaka, H., Minamoto, T., Matsuura, J., et al., A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant, Limnology, 2017, vol. 18, pp. 233–241. https://doi.org/10.1007/s10201-016-0508-5

    Article  CAS  Google Scholar 

  38. Yamazaki, Y. and Nishio, M., Detection of endangered Itasenpara bitterling using simple environmental DNA analysis, Jpn. J. Ichthyol., 2019, vol. 66, no. 2, pp. 171–179. https://doi.org/10.11369/jji.19-005

    Article  Google Scholar 

  39. Zhang, W.Z., Xiong, X.M., Zhang, X.J., et al., Mitochondrial genome variation after hybridization and differences in the first and second generation hybrids of bream fishes, PLoS One, 2016, vol. 11, no. 7, art. ID e0158915. https://doi.org/10.1371/journal.pone.0158915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our gratitude to Prof. Dr. Keiichi Takahashi, Director of the Lake Biwa Museum, who gave us permission to collect water from the rearing water of the Itasenpara bitterling.

Funding

This research was financially supported by the Grant for Collaborative Research, Nagahama Institute of Bio-Science and Technology (FY2020) to AK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kurabayashi.

Ethics declarations

Conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Statement of the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakehashi, R., Ito, S., Yasui, K. et al. Amplification and Sequencing of the Complete mtDNA of the Endangered Bitterling, Acheilognathus longipinnis (Cyprinidae), using Environmental DNA from Aquarium Water. J. Ichthyol. 62, 280–288 (2022). https://doi.org/10.1134/S0032945222020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222020072

Keyword:

Navigation