Skip to main content
Log in

Mitogenomic Evolution and Interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The First Evidence Toward Resolution of Higher-Level Relationships of the World’s Largest Freshwater Fish Clade Based on 59 Whole Mitogenome Sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Fishes of the order Cypriniformes are almost completely restricted to freshwater bodies and number > 3400 species placed in 5 families, each with poorly defined subfamilies and/or tribes. The present study represents the first attempt toward resolution of the higher-level relationships of the world’s largest freshwater-fish clade based on whole mitochondrial (mt) genome sequences from 53 cypriniforms (including 46 newly determined sequences) plus 6 outgroups. Unambiguously aligned, concatenated mt genome sequences (14,563 bp) were divided into 5 partitions (first, second, and third codon positions of the protein-coding genes, rRNA genes, and tRNA genes), and partitioned Bayesian analyses were conducted, with protein-coding genes being treated in 3 different manners (all positions included; third codon positions converted into purine [R] and pyrimidine [Y] [RY-coding]; third codon positions excluded). The resultant phylogenies strongly supported monophyly of the Cypriniformes as well as that of the families Cyprinidae, Catostomidae, and a clade comprising Balitoridae + Cobitidae, with the 2 latter loach families being reciprocally paraphyletic. Although all of the data sets yielded nearly identical tree topologies with regard to the shallower relationships, deeper relationships among the 4 major clades (the above 3 major clades plus Gyrinocheilidae, represented by a single species Gyrinocheilus aymonieri in this study), were incongruent depending on the data sets. Treatment of the rapidly saturated third codon–position transitions appeared to be a source of such incongruities, and we advocate that RY-coding, which takes only transversions into account, effectively removes this likely “noise” from the data set and avoids the apparent lack of signal by retaining all available positions in the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    PubMed  CAS  Google Scholar 

  • Alves MJ, Collares-Pereira MJ, Dowling TE, Coelho MM (2002) The genetics of maintenance of an all-male lineage in the Squalius alburnoides complex. J Fish Biol 60:649–662

    CAS  Google Scholar 

  • Arai R (1982) A chromosome study on two cyprinid fishes Acrossocheilus labiatus and Psuedorasbora pumila pumila, with notes on Eurasian cyprinids and their karyotypes. Bull Nat Sci Mus Tokyo Ser A (Zool) 8:131–152

    Google Scholar 

  • Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Google Scholar 

  • Baird IG, Inthaphaisy V, Kisouvannalath P, Phylavanh B, Mounsouphom B (1999) The fishes of southern Lao. Lao Community Fisheries and Dolphin Protection Project. Ministry of Agriculture and Forestry, Lao PDR, 161 pp

  • Berra T (2001) Freshwater fish distribution. Academic, London, UK

    Google Scholar 

  • Briolay J, Galtier N, Brito RM, Bouvet Y (1998) Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol 9:100–108

    Article  PubMed  CAS  Google Scholar 

  • Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967

    PubMed  CAS  Google Scholar 

  • Cavender TM, Coburn MM (1992) Phylogenetic relationships of North American Cyprinidae. In: Mayden RL (ed) Systematics historical ecology and North American freshwater fishes. Stanford University Press, Palo Alto, CA, pp 293–327

    Google Scholar 

  • Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288

    Article  PubMed  CAS  Google Scholar 

  • Chen X-L, Yue P-Q, Lin R-D (1984) Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxon Sinica 9:424–440

    Google Scholar 

  • Chen Y-Y, et al. (1997) Fauna Sinica. Osteichthyes: Cypriniformes II. Science Press, Beijing, China

    Google Scholar 

  • Cheng S, Chang S-Y, Gravitt P, Respess R (1994) Long PCR. Nature 369:684–685

    Article  PubMed  CAS  Google Scholar 

  • Clements MD, Bart HL Jr, Herley DL (2004) Isolation and characterization of two distinct growth hormone cDNAs from the tetraploid smallmouth buffalofish (Ictiobus bubalus). Gen Comp Endocrinol 136:411–418

    Article  PubMed  CAS  Google Scholar 

  • Coburn MM, Cavender TM (1992) Interrelationships of North American cyprinid fishes. In: Mayden RL (ed) Systematics historical ecology and North American freshwater fishes. University Press, Palo Alto, CA, pp 328–373

    Google Scholar 

  • Cunha C, Mesquita N, Dowling TE, Gilles A, Coelho MM (2002) Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences. J Fish Biol 61:929–944

    Article  CAS  Google Scholar 

  • Delsuc F, Phillips MJ, Penny D (2003) Technical comment on “Hexapod origins: Monophyletic or paraphyletic?” Science 301:1482

    Article  PubMed  CAS  Google Scholar 

  • Dettai A, Lecointre G (2005) Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. CR Biol 328:674–689

    CAS  Google Scholar 

  • De Rijk P, Caers A, Van de Peer Y, De Wachter R (1998) Database of the structure of large ribosomal subunit RNA. Nucleic Acids Res 26:183–186

    Article  PubMed  Google Scholar 

  • Durand J-D, Tsigenopoulos CS, Ünlü E, Berrebi P (2002) Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA: Evolutionary significance of this region. Mol Phylogenet Evol 22:91–100

    Article  PubMed  CAS  Google Scholar 

  • Duyk G, Schmitt K (2001) Fish x 3. Nat Genet 27:8–9

    Article  PubMed  CAS  Google Scholar 

  • Fink SV, Fink WL (1981) Interrelationships of the ostariophysan fishes. Zool J Linn Soc 72:297–353

    Google Scholar 

  • Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic, San Diego, CA, pp 209–249

    Google Scholar 

  • Gilles A, Lecointre G, Faure E, Chappaz R, Brun G (1998) Mitochondrial phylogeny of the European cyprinids: implications for their systematics, reticulate evolution, and colonization time. Mol Phylogenet Evol 19:22–33

    Article  Google Scholar 

  • Gilles A, Lecointre G, Miquelis A, Loerstcher M, Chappaz R, Brun G (2001) Partial combination applied to phylogeny of European cyprinids using the mitochondrial control region. Mol Phylogenet Evol 19:22–33

    Article  PubMed  CAS  Google Scholar 

  • Hänfling B, Brandl R (2000) Phylogenetics of European cyprinids: Insights from allozymes. J Fish Biol 57:265–276

    Article  Google Scholar 

  • Harris PM, Mayden RL (2001) Phylogenetic relationships of major clades of Catostomidae (Teleostei: Cypriniformes) as inferred from mitochondrial SSU and LSU rDNA sequences. Mol Phylogenet Evol 20:225–237

    Article  PubMed  CAS  Google Scholar 

  • Harrison GL, McLenachan PA, Phillips MJ, Slack KE, Cooper A, Penny D (2004) Four new avian mitochondrial genomes help get to basic evolutionary questions in the late Cretaceous. Mol Biol Evol 21:974–983

    Article  PubMed  CAS  Google Scholar 

  • He D, Chen Y, Chen Y, Chen Z (2004a) Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chinese Sci Bull 49:39–48

    Article  CAS  Google Scholar 

  • He S, Liu H, Chen Y, Kuwahara M, Nakajima T, Zhong Y (2004b) Molecular phylogenetic relationships of Eastern Asian Cyprinidae (Pisces: Cypriniformes) inferred from cytochrome b sequences. Sci China Ser C Life Sci 47:130–138

    Article  CAS  Google Scholar 

  • Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47:3–8

    Article  PubMed  CAS  Google Scholar 

  • Howes GJ (1991) Systematics and biogeography: An overview. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes: Systematics biology and exploitation. Chapman & Hall, London, UK, pp 1–33

    Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2000) Complete mitochondrial DNA sequence of the Japanese sardine, Sardinops melanostictus. Fish Sci 66:924–932

    Article  CAS  Google Scholar 

  • Inoue JG, Miya M, Aoyama J, Ishikawa S, Tsukamoto K, Nishida M (2001a) Complete mitochondrial DNA sequence of the Japanese eel, Anguilla japonica. Fish Sci 67:118–125

    Article  CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2001b) Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): Novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol 52:311–320

    CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2001c) A mitogenomic perspective on the basal teleostean phylogeny: Resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol 20:275–285

    Article  CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2001d) Complete mitochondrial DNA sequence of the Japanese anchovy, Engraulis japonicus. Fish Sci 67:828–835

    Article  CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Evolution of the deep-sea gulper eel mitochondrial genomes: Large-scale gene rearrangements originated within the eels. Mol Biol Evol 20:1911–1917

    Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 32:274–286

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of ayu, Plecoglossus altivelis. Fish Sci 67:474–481

    Article  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: A mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii.” Mol Phylogenet Evol 27:476–488

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Inoue JG, Nishida M (2005) Sundasalanx (Sundasalangidae) is a progenetic clupeiform, not a closely-related group of salangids (Osmeriformes): Mitogenomic evidence. J Fish Biol 67:561–569

    Article  Google Scholar 

  • Johnson GD, Patterson C (1993) Percomorph phylogeny: A survey of acanthomorphs and a new proposal. Bull Mar Sci 52:554–626

    Google Scholar 

  • Kawaguchi A, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of Aulopus japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: Longer DNA sequences and higher-level relationships. Ichthyol Res 48:213–223

    Article  Google Scholar 

  • Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5:283–288

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kottelat M, Britz R, Hui TH, Witte KE (2005) Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world’s smallest vertebrate. Proc R Soc Lond B Biol Sci 273:895–899

    Article  Google Scholar 

  • Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37:380–398

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa Y, Azuma Y, Nishida M (2004) Tempo of mitochondrial gene evolution: Can mitochondrial DNA be used to date old divergence? Endocytobiosis Cell Res 15:136–142

    Google Scholar 

  • Lanyon S (1988) The stochastic mode of molecular evolution: What consequences for systematic investigators? Auk 105:565–573

    Google Scholar 

  • Larget B, Simon DL (1999) Markov Chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    CAS  Google Scholar 

  • Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro NB, Nishida M (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitochondrial genome sequences: Implications for higher-level relationships within the Otocephala. Mol Phylogenet Evol 37:165–177

    Article  PubMed  Google Scholar 

  • Lê HLV, Lecointre G, Perasso R (1993) A 28S rRNA based phylogeny of the gnathostomes: First steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phylogenet Evol 2:31–51

    Article  PubMed  Google Scholar 

  • Leggatt RA, Iwama GK (2003) Occurrence of polyploidy in the fishes. Rev Fish Biol Fish 13:237–246

    Article  Google Scholar 

  • Li J, Wan X, He S, Chen Y (2005) Phylogenetic studies of Chinese labeonine fishes (Teleostei: Cyprinidae) based on the mitochondrial 16S rRNA gene. Prog Nat Sci 15:213–219

    CAS  Google Scholar 

  • Liu H, Chen Y (2003) Phylogeny of the East Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Can J Zool 81:1938–1946

    Article  CAS  Google Scholar 

  • Lôpez JA, Chen W-J, Ortí G (2004) Esociform phylogeny. Copeia 2004:449–464

    Article  Google Scholar 

  • Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M (2006) Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.): Further evidence for an ancient origin. Aquaculture 257:68–77

    Article  CAS  Google Scholar 

  • Martin AP, Burg TM (2002) Perils of paralogy: Using HSP70 genes for inferring organismal phylogenies. Syst Biol 51:570–587

    Article  PubMed  Google Scholar 

  • Mau B, Newton MA, Larget B (1999) Bayesian phylogenetic inference via Markov Chain Monte Carlo methods. Biometrics 55:1–12

    Article  PubMed  CAS  Google Scholar 

  • Miller RE, Buckley TR, Manos PS (2002) An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference. Syst Biol 51:740–753

    Article  PubMed  Google Scholar 

  • Minegishi Y, Aoyama J, Inoue JG, Miya M, Nishida M, Tsukamoto K (2005) Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol Phylogenet Evol 34:134–146

    Article  PubMed  CAS  Google Scholar 

  • Mirza RS, Chivers DP (2003) Fathead minnows learn to recognize heterospecific alarm cues they detect in the diet of a known predator. Behaviour 140:1359–1369

    Article  Google Scholar 

  • Miya M, Nishida M (1999) Organization of the mitochondrial genome of a deep-sea fish Gonostoma gracile (Teleostei: Stomiiformes): First example of transfer RNA gene rearrangements in bony fishes. Mar Biotechnol 1:416–426

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular phylogenetics: A tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Kawaguchi A, Nishida M (2001) Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 18:1993–2009

    PubMed  CAS  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Saitoh K, Wood R, Nishida M, Mayden RL (2006, in press) New primers for amplifying and sequencing the mitochondrial ND4/ND5 gene region of the Cypriniformes (Actinopterygii: Ostariophysi). Ichthyol Res 53:75–81

    Article  Google Scholar 

  • Miya M, Satoh TP, Nishida M (2005) The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol J Linn Soc 85:289–306

    Article  Google Scholar 

  • Murakami J, Yamashita Y, Fujitani H (1998) The complete sequence of mitochondrial genome from a gynogenetic triploid “ginbuna” (Carassius auratus longsdorfi). Zool Sci 15:335–337

    Article  CAS  Google Scholar 

  • Nelson JS (1994) Fishes of the world, third ed. Wiley, NY

    Google Scholar 

  • Okazaki M, Naruse K, Shima A, Arai R (2001) Phylogenetic relationships of bitterings based on mitochondrial 12S ribosomal DNA sequences. J Fish Biol 58:89–106

    Article  CAS  Google Scholar 

  • Phillips MJ, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28:171–185

    Article  PubMed  CAS  Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Mol Evol 43:304–311

    PubMed  CAS  Google Scholar 

  • Roberts TR (1989) The freshwater fishes of western Borneo (Kalimantan Barat Indonesia). Mem Calif Acad Sci 14:i–xii, 1–210

    Google Scholar 

  • Roberts TR, Warren TJ (1994) Observations of fishes and fisheries in southern Laos and northeastern Cambodia October 1993–February 1994. Nat Hist Bull Siam Soc 42:87–115

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Saitoh K, Kim I-S, Lee E-H (2004) Mitochondrial gene introgression between spined loaches via hybridogenesis. Zool Sci 21:795–798

    Article  PubMed  CAS  Google Scholar 

  • Saitoh K, Miya M, Inoue JG, Ishiguro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fishes: Perspectives on phylogeny and biogeography. J Mol Evol 56:464–472

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y (1982) Phylogeny and zoogeography of the superfamily Cobitoidea (Cyprinoidei: Cypriniformes). Mem Fact Fish Hokkaido Univ 28:65–223

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Siebert DJ (1987) Interrelationships among families of the order Cypriniformes (Teleostei). Doctoral dissertation, The City University of New York, New York, NY

    Google Scholar 

  • Simmons MP, Miya M (2004) Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approach: A case study using mitogenomic data from 100 higher teleost fishes. Mol Phylogenet Evol 31:351–362

    Article  PubMed  CAS  Google Scholar 

  • Simons AM, Berentzen P, Mayden RM (2003) Molecular systematics of North American phoxinin genera (Actinopterygii: Cyprinidae) inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Zool J Linn Soc 139:63–80

    Article  Google Scholar 

  • Smith GR (1992) Phylogeny and biogeography of the Catostomidae, freshwater fishes of North America and Asia. In: Mayden RL (ed) Systematics historical ecology and North American freshwater fishes. Stanford University Press, Palo Alto, CA, pp 778–826

    Google Scholar 

  • Smith WL, Wheeler WC (2004) Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Mol Phylogenet Evol 32:627–646

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2001) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer Associates, MA

  • Talwar PK, Jhingran AG (1991) Inland fishes of India and adjacent countries. Volume 1. Balkema, Rotterdam, The Netherlands

  • Tang Q, Xiong B, Yang X, Liu H (2005) Phylogeny of the East Asian botiine loaches (Cypriniformes Botiidae) inferred from mitochondrial cytochrome b gene sequences. Hydrobiologia 544:249–258

    Article  CAS  Google Scholar 

  • Tzeng CS, Hui CF, Shen SC, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20:4853–4858

    PubMed  CAS  Google Scholar 

  • Van de Peer Y, Caers A, De Rijk P, De Wachter R (1998) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 26:179–182

    Article  PubMed  Google Scholar 

  • Vrijenhoek RC, Dawley RM, Cole CJ, Bogart JP (1989) A list of the known unisexual vertebrates. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. Bull 466. New York State Museum, New York, NY, pp 19–23

    Google Scholar 

  • Wiley EO, Johnson GD, Dimmick WW (2000) The interrelationships of acanthomorph fishes: A total evidence approach using molecular and morphological data. Biochem Syst Ecol 28:319–350

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chen Y, Chen X-L, Chen J-X (1981) Classification and phylogenetic interrelationships among families of suborder Cyprinoidei. Sci China 3:369–376

    Google Scholar 

  • Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M (2004) Mitochondrial genomes and phylogeny of the ocean sunfishes (Tetraodontiformes: Molidae). Ichthyol Res 51:269–273

    Article  Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol 39:306–314

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724

    PubMed  CAS  Google Scholar 

  • Xiao W, Zhang Y, Liu H (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol 18:163–173

    Article  PubMed  CAS  Google Scholar 

  • Zaragueta-Bagils R, Lavoué S, Tillier A, Bonillo C, Lecointre G (2002) Assessment of otocephalan and protacanthopterygian concepts in the light of multiple molecular phylogenies. CR Biol 325:1191–1207

    Google Scholar 

  • Zardoya R, Doadrio I (1998) Phylogenetic relationships of Iberian Cyprinidae: Systematic and biogeographical implications. Proc Roy Soc Lond Ser B 265:1365–1372

    Article  CAS  Google Scholar 

  • Zardoya R, Doadrio I (1999a) Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J Mol Evol 49:227–237

    Article  CAS  Google Scholar 

  • Zardoya R, Doadrio I (1999b) Phylogenetic relationships of Greek Cyprinidae: Molecular evidence for at least two independent origins of the Greek cyprinid fauna. Mol Phylogenet Evol 13:122–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been conducted as a part of the Cypriniformes Tree of Life (CToL) Project (http://www.cypriniformes.org). For donation of the study materials, we sincerely thank T. Asahida, H. L. Bart Jr., J. Bohlen, T. Eros, Y. Fujimoto, H. Imai, Y. P. Kartavtsev, K. Katsura, S. Lavoué, N. E. Mandrak, M. Matsuda, T. Mukai, J. Nakajima, H. Persat, P. Rab, V. V. Sviridov, K. Takahashi, T. Ueda, T. Urano, A. A. Varaksin, E. O. Wiley, and T. Yokoyama. We also thank Y. Kumazawa for advice on data analysis. Critical comments from 2 anonymous reviewers were helpful to improve the manuscript. This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Japan Science for the Promotion of Science (Grants No. 12NP0201, 13556028, 15570090, 15380131, and 17207007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miya.

Additional information

[Reviewing Editor: Rafael Zardoya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, K., Sado, T., Mayden, R.L. et al. Mitogenomic Evolution and Interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The First Evidence Toward Resolution of Higher-Level Relationships of the World’s Largest Freshwater Fish Clade Based on 59 Whole Mitogenome Sequences. J Mol Evol 63, 826–841 (2006). https://doi.org/10.1007/s00239-005-0293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0293-y

Keywords

Navigation