Skip to main content
Log in

Genomic analysis and phylogenetic characterization of Himalayan snow trout, Schizothorax esocinus based on mitochondrial protein-coding genes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes.

Methods

Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis.

Results

The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%.

Conclusion

The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in GenBank via Bankit: http://www.ncbi.nlm.nih.gov/BankIt/.

References

  1. Yin F, Cadenas E (2015) Mitochondria: the cellular hub of the dynamic coordinated network. Antioxid Redox Signal 22:961–964. https://doi.org/10.1089/ars.2015.6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 112:10177–10184. https://doi.org/10.1073/pnas.1422049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annu Rev Mar Sci 3:471–508. https://doi.org/10.1146/annurev-marine-120308-080950

    Article  Google Scholar 

  4. Bernt M, Braband A, Schierwater B, Stadler PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69:328–338. https://doi.org/10.1016/j.ympev.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  5. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  6. Satoh TP, Miya M, Mabuchi K, Nishida M (2016) Structure and variation of the mitochondrial genome of fishes. BMC Genomics. https://doi.org/10.1186/s12864-016-3054-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish.” Mol Phylogenet Evol 26:110–120. https://doi.org/10.1016/S1055-7903(02)00331-7

    Article  CAS  PubMed  Google Scholar 

  8. Peng Z, Wang J, He S (2006) The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes: Cranoglanididae) and the phylogeny of otophysan fishes. Gene 376:290–297. https://doi.org/10.1016/j.gene.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  9. Domingues VS, Santos RS, Brito A, Alexandrou M, Almada VC (2007) Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J Exp Mar Bio Ecol 346:102–113. https://doi.org/10.1016/j.jembe.2007.03.002

    Article  CAS  Google Scholar 

  10. Wu X, Wang L, Chen S, Zan R, Xiao H, Zhang YP (2010) The complete mitochondrial genomes of two species from Sinocyclocheilus (Cypriniformes: Cyprinidae) and a phylogenetic analysis within Cyprininae. Mol Biol Rep 37:2163–2171. https://doi.org/10.1007/s11033-009-9689-x

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Yue B, Jiang W, Song Z (2009) The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Biol Rep 36:981–991. https://doi.org/10.1007/s11033-008-9271-y

    Article  CAS  PubMed  Google Scholar 

  12. Kong XH, Wang XZ, Gan XN, Li JB, He SP (2007) Phylogenetic relationships of Cyprinidae (Teleostei: Cypriniformes) inferred from the partial S6K1 gene sequences and implication of indel sites in intron 1. Sci China, Ser C Life Sci 50:780–788. https://doi.org/10.1007/s11427-007-0076-3

    Article  CAS  Google Scholar 

  13. Chen YF, Cao WX (2000) Schizothoracinae. Fauna Sinica, Osteichthyes, Cypriniformes III. Science Press, Beijing, pp 273–335

    Google Scholar 

  14. Mir FA, Mir JI, Chandra S (2013) Phenotypic variation in the Snowtrout Schizothorax richardsonii (Gray, 1832) (Actinopterygii: Cypriniformes: Cyprinidae) from the Indian Himalayas. Contrib Zool 82:115–122. https://doi.org/10.1163/18759866-08203001

    Article  Google Scholar 

  15. Mirza M (1991) A contribution to the systematics of the Schizothoracine fishes (Pisces: Cyprinidae) with the description of three new tribes. Pak J Zool 23:339–341

    Google Scholar 

  16. Ganai FA, Yousuf AR, Dar SA, Wani SU, Tripathi NK (2011) Cytotaxonomic status of schizothoracine fishes of kashmir himalaya (teleostei: Cyprinidae). Caryologia 64:435–445. https://doi.org/10.1080/00087114.2011.10589811

    Article  Google Scholar 

  17. Jhingran VG (1991) Fish and fisheries of India. Hindustan Pub. Corp, New Delhi, p 727

    Google Scholar 

  18. Sunder S, Bhagat MJ (1979) A note on the food of Schizothorax plagiostomus (McClelland) in the Chenab drainage of Jammu Province during 1973–74. J Inland Fish Soc India 11:117–118

    Google Scholar 

  19. Bashir A, Bisht BS, Mir JI, Patiyal RS, Kumar R (2016) Morphometric variation and molecular characterization of snow trout species from Kashmir valley, India. Mitochondrial DNA A DNA Mapp Seq Anal 27:4492–4497. https://doi.org/10.3109/19401736.2015.1101537

    Article  CAS  PubMed  Google Scholar 

  20. Kullander SO, Fang F, Delling B, Åhlander E (1999) The fishes of the Kashmir Valley. River Jhelum, Kashmir Valley: impacts on the aquatic environment. Göteborg, Swedmar, pp 99–167

    Google Scholar 

  21. Ahmad SM, Bhat FA, Balkhi MUH, Bhat BA (2014) Mitochondrial DNA variability to explore the relationship complexity of Schizothoracine (Teleostei: Cyprinidae). Genetica 142:507–516. https://doi.org/10.1007/s10709-014-9797-y

    Article  CAS  PubMed  Google Scholar 

  22. Kartavtsev YP, Batischeva NM, Bogutskaya NG, Katugina AO, Hanzawa N (2017) Molecular systematics and DNA barcoding of Altai osmans, oreoleuciscus (pisces, cyprinidae, and leuciscinae), and their nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal 28:502–517. https://doi.org/10.3109/24701394.2016.1149822

    Article  CAS  PubMed  Google Scholar 

  23. Ma Q, He K, Wang X, Jiang J, Zhang X, Song Z (2020) Better resolution for cytochrome b than cytochrome c oxidase subunit i to identify Schizothorax species (Teleostei: Cyprinidae) from the Tibetan Plateau and its adjacent area. DNA Cell Biol 39:579–598. https://doi.org/10.1089/dna.2019.5031

    Article  CAS  PubMed  Google Scholar 

  24. Lakra WS, Goswami M, Gopalakrishnan A (2009) Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit i mitochondrial genes. Mol Biol Rep 36:831–839. https://doi.org/10.1007/s11033-008-9252-1

    Article  CAS  PubMed  Google Scholar 

  25. Akhtar T, Ali G, Shafi N et al (2020) Sequencing and characterization of mitochondrial protein-coding genes for Schizothorax niger (Cypriniformes: Cyprinidae) with phylogenetic consideration. Biomed Res Int. https://doi.org/10.1155/2020/5980135

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  27. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  29. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728. https://doi.org/10.1093/molbev/mst064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouckaert R, Vaughan TG, Barido-Sottani J et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006650

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  32. Wang C, Song Y, Zi F, Ge J, Chen S (2022) The mitochondrial genome of Schizothorax argentatus from Northern Xinjiang and its phylogenetic analysis. Mitochondrial DNA B Resour 7:1834–1836. https://doi.org/10.1080/23802359.2022.2133555

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Wang J, He S, Mayden RL (2007) The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate. Gene 399:11–19. https://doi.org/10.1016/j.gene.2007.04.019

    Article  CAS  PubMed  Google Scholar 

  34. Takashima Y, Morita T, Yamashita M (2006) Complete mitochondrial DNA sequence of Atlantic horse mackerel Trachurus trachurus and molecular identification of two commercially important species T. trachurus and T. japonicus using PCR-RFLP. Fish Sci 72:1054–1065. https://doi.org/10.1111/j.1444-2906.2006.01256.x

    Article  CAS  Google Scholar 

  35. Waldbieser GC, Bilodeau AL, Nonneman DJ (2003) Complete sequence and characterization of the channel catfish mitochondrial genome. DNA Seq 14:265–277. https://doi.org/10.1080/1042517031000149057

    Article  CAS  PubMed  Google Scholar 

  36. Liu ZZ, Wang CT, Ma LB, He AY, Yang JQ, Tang WQ (2012) Complete mitochondrial genome of the mudskipper Boleophthalmus pectinirostris (Perciformes, Gobiidae): Repetitive sequences in the control region. Mitochondrial DNA 23:31–33. https://doi.org/10.3109/19401736.2011.643879

    Article  CAS  PubMed  Google Scholar 

  37. Khan MF, Khattak MNK, He D, Liang Y, Li C, Dawar FU, Chen Y (2016) The mitochondrial genome of Schizothorax esocinus (Cypriniformes: Cyprinidae) from Northern Pakistan. Mitochondrial DNA 27:3772–3773. https://doi.org/10.3109/19401736.2015.1079899

    Article  CAS  Google Scholar 

  38. Khan MF, Khattak MNK, He D, Liang Y, Li C, Dawar FU, Chen Y (2016) The complete mitochondrial genome organization of Schizothorax plagiostomus (Teleostei: Cyprinidae) from Northern Pakistan. Mitochondrial DNA 27:3630–3632. https://doi.org/10.3109/19401736.2015.1079829

    Article  CAS  Google Scholar 

  39. Barat A, Ali S, Sati J, Sivaraman GK (2012) Phylogenetic analysis of fishes of the subfamily Schizothoracinae (Teleostei: Cyprinidae) from Indian Himalayas using cytochrome b gene. Indian J Fish 59:43–47

    Google Scholar 

  40. Akhtar T, Ali G, Shafi N, Rauf A (2020) Molecular characterization of subfamily schizothoracinae (Teleostei: Cyprinidae) using complete sequence of mitochondrial 16S rRNA gene. Pak J Zool 52:273–282

    CAS  Google Scholar 

  41. Sharma P, Purohit S, Kothiyal S, Bhattacharya I (2023) Molecular phylogeny of Schizothorax species based on concatenated CO-I and Cyt b sequences. J Mt Res. https://doi.org/10.51220/jmr.v18i1.14

    Article  Google Scholar 

  42. Qiao H, Cheng Q, Chen Y, Chen W, Zhu Y (2013) The complete mitochondrial genome sequence of Coilia ectenes (Clupeiformes: Engraulidae). Mitochondrial DNA 24:123–125. https://doi.org/10.3109/19401736.2012.731405

    Article  CAS  PubMed  Google Scholar 

  43. Rehman A, Khan MF, Bibi S, Nouroz F (2020) Comparative phylogeny of (Schizothorax esocinus) with reference to 12s and 16 sribosomal RNA from River Swat, Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 31:81–85. https://doi.org/10.1080/24701394.2020.1741561

    Article  CAS  PubMed  Google Scholar 

  44. Tsigenopoulos CS, Berrebi P (2000) Molecular phylogeny of north Mediterranean freshwater barbs (genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Mol Phylogenet Evol 14:165–179. https://doi.org/10.1006/mpev.1999.0702

    Article  CAS  PubMed  Google Scholar 

  45. Liu S, Liu Y, Zhou G, Zhang X, Luo C, Feng H, He X, Zhu G, Yang H (2001) The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization. Aquaculture 192:171–186. https://doi.org/10.1016/S0044-8486(00)00451-8

    Article  Google Scholar 

  46. Yang Z, Bielawski JR (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503. https://doi.org/10.1016/S0169-5347(00)01994-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schaack S, Ho EKH, MacRae F (2020) Disentangling the intertwined roles of mutation, selection and drift in the mitochondrial genome. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2019.0173

    Article  Google Scholar 

  48. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420

    Article  CAS  PubMed  Google Scholar 

  49. Barrientos A, Barros MH, Valnot I, Rötig A, Rustin P, Tzagoloff A (2002) Cytochrome oxidase in health and disease. Gene. https://doi.org/10.1016/S0378-1119(01)00803-4

    Article  PubMed  Google Scholar 

  50. Ruan H, Li M, Li Z, Huang J, Chen W, Sun J, Liu L, Zou K (2020) Comparative analysis of complete mitochondrial genomes of three gerres fishes (Perciformes: Gerreidae) and primary exploration of their evolution history. Int J Mol Sci. https://doi.org/10.3390/ijms21051874

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dukler N, Mughal MR, Ramani R, Huang YF, Siepel A (2022) Extreme purifying selection against point mutations in the human genome. Nat Commun. https://doi.org/10.1038/s41467-022-31872-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cvijović I, Good BH, Desai MM (2018) The effect of strong purifying selection on genetic diversity. Genetics 209:1235–1278. https://doi.org/10.1534/genetics.118.301058

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bibi S, Fiaz khan M (2019) Phylogenetic association of Schizothorax esocinus with other Schizothoracinae fishes based on protein coding genes. Mitochondrial DNA B Resour 4:352–355. https://doi.org/10.1080/23802359.2018.1536445

    Article  Google Scholar 

  54. Chen W, Yue X, He S (2017) Genetic differentiation of the Schizothorax species complex (Cyprinidae) in the Nujiang River (upper Salween). Sci Rep. https://doi.org/10.1038/s41598-017-06172-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend gratitude to the Department of Zoology, University of Kashmir and the Division of Animal Biotechnology, SKUAST-K for laboratory facilities. Appreciation is also expressed to the Council of Scientific & Industrial Research (CSIR), Government of India, for providing financial support through a CSIR fellowship to author Ms. Gulshan Akhter.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Gulshan Akhter: Conceptualization; formal analysis; validation; Data curation; visualization; writing—original draft, writing- review and editing. Imtiaz Ahmed: Conceptualization; validation; visualization; supervision; writing- review and editing. S.M. Ahmad: Conceptualization; formal analysis; writing- review and editing.

Corresponding authors

Correspondence to I. Ahmed or S. M. Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Sampling of the target organism aligns with ethical standards and approved protocols established by an Animal Ethical Committee known as, Committee for the Purpose of Control and Supervision on Experiments on Animals (Reference Number 801/Go/RE/S/2003/CPCSEA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Supplementary file2 (DOCX 448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhter, G., Ahmed, I. & Ahmad, S.M. Genomic analysis and phylogenetic characterization of Himalayan snow trout, Schizothorax esocinus based on mitochondrial protein-coding genes. Mol Biol Rep 51, 659 (2024). https://doi.org/10.1007/s11033-024-09622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09622-2

Keywords

Navigation