Skip to main content
Log in

Calorimetric Effects in the Structural and Phase Transitions of Metals and Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry belongs to a group of rather unique study methods, which makes it possible to investigate in situ the regularities of structural and phase transitions in metallic alloys within a broad range of temperatures (from –100 to 1600°C) at a sufficiently high precision of registering the heat effects of phase transitions. Our paper reviews the results of DSC studies for the alloys based on metals with polymorphism, the thermoelastic martensitic transitions, the decomposition and formation of solid solutions, and the crystallization of amorphous metallic metal-metal alloys. This review puts particular emphasis on considering phase transitions in hydrogen-containing alloys, both crystalline and amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. K. Yu. Shakhnazarov, “Chernov’s iron–carbon diagram, the structure and properties of steel,” Met. Sci. Heat Treat. 51, 3–6 (2009).

    Article  CAS  Google Scholar 

  2. M. L. Bernshtein, G. V. Kurdyumov, V. S. Mes’kin, A. A. Popov, V. D. Sadovskii, Yu. A. Skakov, V. M. Schastlivtsev, Yu. N. Taran, L. M. Utevskii, R. I. Entin, “Iron–Carbon / Metallurgy and Heat Treatment of Steel and Cast Iron, Ed. by A. G. Rakhshtadt, L. M. Kaputkina, S. D. Prkoshkin, and A.V. Supov (Intermet Inzhiniring, Moscow, 2005), Vol. 2, p. 526 [in Russian].

    Google Scholar 

  3. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Perlite in Carbon Steels (UrO RAN, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  4. A. S. Pandit and H. K. D. H. Bhadeshia, “Divorced pearlite in steels,” Proc. R. Society A 468, No. 2145, 2767–2778 (2012).

    Article  CAS  Google Scholar 

  5. V. G. Vaks and K. Yu. Khromov, “On the theory of austenite-cementite phase equilibria in steels,” J. Exp. Theor. Phys. 106, No. 2, 265–279 (2008).

    Article  CAS  Google Scholar 

  6. V. I. Zel’dovich, “Three mechanisms of formation of austenite and inheritance of structure in iron alloys,” Met. Sci. Heat Treat. 50, No. 9–10, 442–448 (2008).

    Article  CAS  Google Scholar 

  7. X. Zhang, T. Hickel, J. Rogal, S. Fahler, R. Drautz, and J. Neugebauer, “Structural transformations among austenite, ferrite and cementite in Fe–C alloys: A unified theory based on ab initio simulations,” Acta Mater. 99, 281–289 (2015).

    Article  CAS  Google Scholar 

  8. I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnel’son, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, No. 4, 362–388 (2017).

    Article  CAS  Google Scholar 

  9. V. S. Biron and I. V. Blokhin, “ Some features of phase transformations in the iron-carbon system,” J. Siberian Federal Univ. Eng. Technol. 3, No. 2, 238–249 (2009).

    Google Scholar 

  10. S. A. Oglezneva, M. N. Kachenyuk, N. Portalov, and L. V. Spivak, “Effect of the dispersion of iron and nickel powders on the phase transformation temperatures and the sintering kinetics,” Russ. Metall., No. 3, 250−255 (2015).

  11. L. V. Spivak and N. E. Shchepina, “Calorimetry of the phase transformations in carbon steels in the intercritical temperature range,” Russ. Metall. 2020, 583–588 (2020).

    Article  Google Scholar 

  12. P. J. Van Ekeren, Handbook of Thermal Analysis and Calorimetry Vol. 1: Principles and Practice, Ed. by M. E. Brown (Elsevier, Amsterdam, 1998), pp. 75–114.

  13. V. A. Aleshkevich, Molecular Physics (Fizmatlit, Moscow, 2016) [in Russian].

  14. S. M. Sarge, G. W. H. Höhne, and W. F. Hemminger, Calorimetry. Fundamentals Instrumentation and Applications (Wiley, Weinheim, 2014), p. 304.

    Google Scholar 

  15. H. E. Kisinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 1702–1706 (1957).

    Article  Google Scholar 

  16. Physical Metal Science, Ed. by R. U. Red Kan and P. T. Khaazen (Metallurgiya, Moscow, 1987), Vol. 2, p. 624 [in Russian].

    Google Scholar 

  17. Ya. S. Umanskii and Yu. A. Skakov, Metal Physics (Atomizdat, Moscow, 1978).

    Google Scholar 

  18. S. S. D’yachenko, Formation of Austenite in Iron–Carbon alloys (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  19. D. O. Panov and A. I. Smirnov, “Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range,” Phys. Met. Metallogr. 118, No. 11, 1081–1090 (2017).

    Article  CAS  Google Scholar 

  20. D. O. Panov, Yu. N. Simonov, L. V. Spivak, and A. I. Smirnov, “Stages of austenitization of cold-worked low-carbon steel in intercritical temperature range,” Phys. Met. Metallogr. 116, No. 8, 802–809 (2015).

    Article  Google Scholar 

  21. M. A. Dyshlyuk, “Influence of nitrogen on calorimetric effects in 38Kh2MYuA steel,” Abstracts of the Report. XV Ural School of Thermal Metals Science Specialists (Izd-vo Ural’skogo un-ta, Yekaterinburg, 2020), pp. 108–110.

  22. L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and K. A. Kobelev, “ Regularities of austenitization of low-carbon martensitic steels in the intercritical temperature range,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 93–97 (2011).

    Google Scholar 

  23. S. Raju, J. B. Ganesh, A. K. Rai, R. Mythili, S. Saroja, and B. Raj, “A study on martensitic phase transformation in 9Cr–1W–0.23V–0.063Ta–0.56Mn–0.09C–0.02N (wt %) reduced activation steel using differential scanning calorimetry,” J. Nucl. Mater. 405, No. 1, 59–69 (2010).

    Article  CAS  Google Scholar 

  24. M. D. Perkas and V. M. Kardonskii, High Strength Martensitic Steels (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  25. G. V. Kurdjumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  26. L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and M. G. Zakirova, “Multiplet behavior of the processes of austenitization and decomposition of austenite in low-carbon martensitic steels,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 111–114 (2010).

    Google Scholar 

  27. L. V. Spivak, “Phase transformations during heating of steels of the martensitic class,” Vestnik Perm. Un-ta. Ser.: Fizika, No. 1, 62–64 (2013).

    Google Scholar 

  28. N. D. Zemtsova, M. A. Eremina, and V. A. Zavalishin, “Calorimetric effects during the α → γ transformation in Fe–Ni–Ti metastable alloys,” Phys. Met. Metallogr. 113, No. 5, 466–479 (2012).

    Article  Google Scholar 

  29. N. D. Zemtsova, “Anomalies in the physical properties of metastable Fe–Ni alloys heated to the temperature interval of the α → γ transformation,” Tech. Phys. 59, 1050–1157 (2014).

    Google Scholar 

  30. L. V. Spivak and N. E. Shchepina, “Thermal decomposition of titanium hydride,” Al’ternativnaya Energetika i Ekologiya, No. 21, 84–89 (2015).

    Google Scholar 

  31. S. Primig and H. Leitner, “Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis,” Thermochim. Acta. 526, 111–117 (2011).

    Article  CAS  Google Scholar 

  32. J. B. Ganesh, S. Raju, A. K. Rai, E. Mohandas, M. Vijayalakshmi, K. B. S. Rao, and B. Raj, “Differential scanning calorimetry study of diffusional and martensitic phase transformations in some 9 wt % Cr low carbon ferritic steels,” Mater. Sci. Technol. 27, No. 2, 500–512 (2011).

    Article  CAS  Google Scholar 

  33. V. M. Farber, V. A. Khotinov, O. V. Selivanova, O. N. Polukhina, A. S. Yurovskikh, D. O. Panov, “Kinetics of formation of austenite and effect of heating in the intercritical temperature range on the structure of steel 08G2B,” Met. Sci. Heat Treat. 58, 650–655 (2017).

    Article  CAS  Google Scholar 

  34. A. Bojack, L. Zhao, P. F. Morris, and J. Sietsma, “In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel,” Mater. Charact. 71, 77–86 (2012).

    Article  CAS  Google Scholar 

  35. V. M. Chernov, M. V. Leont’eva-Smirnova, M. M. Potapenko, N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, E. G. Astafurova, and L. P. Khromova, “Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and CHS-139,” Tech. Phys. 16, No. 1, 97–102 (2016).

    Article  CAS  Google Scholar 

  36. K. N. Vdovin, K. G. Pivovarova, and M. A. Lisovskaya, “Application of thermal analysis to study the structure and properties of roll steels,” MiTOM, No. 5, 22–25 (2014).

    Google Scholar 

  37. D. V. Gadeev and A. G. Illarionov, “Determination of beta-transus temperature of two-phase titanium alloys using differential scanning calorimetry,” Solid State Phenom. 284, 259–264 (2018).

    Article  Google Scholar 

  38. M. Behera, S. Raju, B. Jeyaganesh, R. Mythili, S. Saroja, “A Study on thermal properties and α (hcp) → β (bcc) phase transformation energetics in Ti–5 wt % Ta–1.8 wt % Nb alloy using inverse drop calorimetry,” Int. J. Thermophys. 31, No. 11, 2246–2263 (2010).

    Article  CAS  Google Scholar 

  39. A. J. Prabha, S. Raju, B. Jeyaganesh, A. K. Rai, M. Behera, M. Vijayalakshmi, G. Paneerselvam, and I. Johnson, “Thermodynamics of α'' → β phase transformation and heat capacity measurements in Ti–15 at % Nb alloy,” Phys. B 406, No. 22, 4200–4209 (2011).

    Article  CAS  Google Scholar 

  40. M. Behera, S. Raju, R. Mythili, and S. Saroja, “Study of kinetics of α → β phase transformation in Ti–4.4 wt % Ta–1.9 wt % Nb alloy using differential scanning calorimetry,” Int. J. Thermophys. 124, No. 3, 1217–1228 (2016).

    CAS  Google Scholar 

  41. V. V. Filippov, D. A. Yagodin, A. A. Kyltseva, S. K. Estimirovf, and K. J. Shunyaev, “The study of eutectoid decomposition kinetics of Cu50Zr50 alloy,” J. Therm. Anal. Calorim. 127, 773–778 (2017).

    Article  CAS  Google Scholar 

  42. G. F. Brazolin, C. C. S. Silva, L. S. Silva, and R. A. G. Silva, “Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy,” J. Therm. Anal. Calorim. 134, 1405–1412 (2018). https://doi.org/10.1007/s10973-018-7586-z

    Article  CAS  Google Scholar 

  43. J. S. Souza, D. A. Modesto, and R. A. G. Silva, “Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions,” J. Therm. Anal. Calorim. 138, 3517–3524 (2019). https://doi.org/10.1007/s10973-019-08277-7

    Article  CAS  Google Scholar 

  44. A. K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, V. Ganesan, “Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study,” J. Nucl. Mater. 383, 215–225 (2009).

    Article  CAS  Google Scholar 

  45. L. V. Spivak and N. E. Shchepina, “Features of the polymorphic transformations in iron and zirconium,” Zh. Tech. Fiz. 90, No. 7, 1145–1150 (2020).

    Google Scholar 

  46. A. G. Illarionov, S. L. Demakov, S. I. Stepanov, and S. M. Illarionova, “Structural and phase transformations in a quenched two-phase titanium alloy upon cold deformation and subsequent annealing,” Phys. Met. Metallogr. 116, No. 3, 267–273 (2015). https://doi.org/10.7868/S0015323015030067

    Article  CAS  Google Scholar 

  47. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, No. 1, 79–86 (2015).

    Article  Google Scholar 

  48. Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, No. 3, 267–274 (2016).

    Article  CAS  Google Scholar 

  49. U. Sari and T. Kırındı, “Effect of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy,” Mater. Charact. 59, No. 7, 920–929 (2008). https://doi.org/10.1016/j.matchar.2007.07.017

    Article  CAS  Google Scholar 

  50. S. H. Chang and S. K. Wu, “Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis,” Mater. Charact. 59, 987–990 (2008).

    Article  CAS  Google Scholar 

  51. H. J. Yu, X. T. Zu, H. Fu, X. Y. Zhang, and Z. G. Wang, “Effect of annealing and heating/ cooling rate on the transformation temperatures of NiFeGa alloy,” J. Alloy. Compd. 470, 237–240 (2009).

    Article  CAS  Google Scholar 

  52. R. I. Babicheva, Doctoral Dissertation in Mathematics and Physics (Ufa, 2015).

  53. K. Yildiz, M. Kök, and F. Dağdelen, “Cobalt addition effects on martensitic transformation and micristructural properties of high-temperature Cu-Fe shape-memory alloys,” J. Therm. Anal. Calorim. 120, No. 2, 1227–1232 (2015). https://doi.org/10.1007/s10973-015-4395-5

    Article  CAS  Google Scholar 

  54. D. Velazquez and R. Romero, “Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy,” J. Therm. Anal. Calorim. 130, 2007–2013 (2017).

    Article  CAS  Google Scholar 

  55. K. Kus and T. Breczko, “DSC-investigation of the effect of annealing temperature on the phase transformation behavior in Ni–Ti shape memory alloy,” Mater. Phys. Mech. 9, 75–83 (2010).

    CAS  Google Scholar 

  56. M. Stipcich and R. Romero, “β-phase thermal degradation in Zr-added Cu–Zn–Al shape memory alloy: a DSC study,” J. Therm. Anal. Calorim. 129, No. 1, 201–207 (2017).

    Article  CAS  Google Scholar 

  57. Z. N. Zhou, L. Yang, R. C. Li, and J.-G. Li, “Martensitic transformations and kinetics in Ni–Mn–In–Mg shape memory alloys,” Intermetallics 92, 49–54 (2018).

    Article  CAS  Google Scholar 

  58. A. G. Varzaneh, P. Kameli, V. R. Zahedi, F. Karimzadeh, and H. Salamati, “Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying,” Met. Mater. Int. 21, 758–764 (2015).

    Article  CAS  Google Scholar 

  59. H. X. Zheng, D. Z. Wu, S. C. Xue, J. Frenzel, G. Eggeler, and Q. J. Zhai, “Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons,” Acta. Mater. 59, 5692–5699 (2011).

    Article  CAS  Google Scholar 

  60. Z. Q. Liao, “Martensitic transformation and magnetic properties of Ni-Mn-In Heusler alloys,” Master of Science Dissertation (Nanjing, 2013).

  61. X. P. Fei, “The structure transformation and magnetic properties of Cu doped NiMnln alloys,” Master of Science Dissertation (Nanjing, 2015).

  62. L. V. Spivak and A. V. Shelyakov, “Anomalous thermal effects during crystallization of amorphous alloys of the TiNi–TiCu system with hydrogen,” Pis’ma Zh. Tekh. Fiz. 35, No. 24, 28–34 (2009).

    Google Scholar 

  63. L. V. Spivak, “Decomposition of Pd–H alloys under heating,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010).

  64. T. Schober and A. Carl, “A differential thermal analysis study of the vanadium-hydrogen systems,” Phys. Status Solidi A 43, 443–449 (1977).

    Article  CAS  Google Scholar 

  65. Y. Fukai, The Metal – Hydrogen System. Basic Bulk Properties (Springer, Heidelberg, 1999), p. 955.

    Google Scholar 

  66. L. V. Spivak, “Calorimetric effects during thermal cycling of V–H alloys,” Al’ternativnaya Energetika i Ekologiya (ISJAEE)., No. 10, 18–21 (2012).

  67. L. V. Spivak, “Abnormal heat effects when heating the alloy system V–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 10, 22–25 (2012).

  68. M. Koiwa and O. Yoshinari, “Hydride precipitation peak in internal friction of V–H, Nb–H and Ta–H alloys,” Res. Mech. 11, No. 1, 27–45 (1984).

    CAS  Google Scholar 

  69. M. Koiwa and O. Yoshinari, “Twist effect of V–H, Nb–H and Ta–H alloys associated with the precipitation of hydrogen,” Acta Metall. 91, No. 12, 2079–2081 (1989).

    Google Scholar 

  70. S. Yang, W. Xu, and X. Fu, “Peak temperature correction in the TPD research,” Chin. J. Catal. 9, No. 1, 92–95 (1988).

    CAS  Google Scholar 

  71. K. G. Prashanth, “Influence of mechanical activation on decomposition of titanium hydride,” Mater. Manuf. Process. 25, No. 9, 974–977 (2010).

    Article  CAS  Google Scholar 

  72. L. V. Spivak, “Thermokinetic effects during heating and cooling of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 23–26 (2013).

  73. L. V. Spivak and N. E. Shchepina, “High-temperature calorimetric effects during heating of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 31–34 (2013).

  74. L. V. Spivak and N. E. Shchepina, “Calorimetric effects on heating metastable alloys of system Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 35–38 (2013).

  75. L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “Low-temperature calorimetric effects during thermal cycling of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 24–29 (2014).

  76. L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “High-temperature calorimetric effects during heating of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 30–34 (2014).

  77. E. V. Kurikhina and V. N. Simonov, “Phase transformations. Exothermic reaction,” Nauka i Obrazovanie. Nauchnoe Izdanie MGTU Im. Baumana, No. 2, 1–6 (2012).

    Google Scholar 

  78. D. Velázquez and R. Romero, “Calorimetric study of spinodal decomposition in β-Cu–Al–Mn,” J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-09234-0

  79. L. Ren, J. Zhu, L. Nan, and K. Yang, “Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel,” Mater. Des. 32, 3980–3985 (2011).

    Article  CAS  Google Scholar 

  80. M. Long, T. Liu, H. Chen, D. Chen, H. Duan, H. Fan, K. Tan, and W. He, “Using differential scanning calorimetry to characterize the precipitation and dissolution of V(CN) and VC particles,” J. Mater. Res., No. 6, 1–12 (2018).

  81. K. S. Ghosh and N. Gao, “Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China. 21, 1199–1209 (2011).

    Article  CAS  Google Scholar 

  82. P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, and E. Kozeschnik, “Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminum alloys during non-isothermal DSC analysis,” J. Alloys Compd. 609, 129–136 (2014).

    Article  CAS  Google Scholar 

  83. A. Falahati, W. U. Jun, P. Lang, M. R. Ahmadi, E. Povoden-Karadeniz, and E. Kozeschnik, “Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry,” Trans. Nonferrous Met. Soc. China. 24, 2157–2167 (2014).

    Article  CAS  Google Scholar 

  84. M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P. C. Skaret, and H. J. Roven, “DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy,” Prog. Nat. Sci.: Mater. Int. 25, 153–159 (2015).

    Article  CAS  Google Scholar 

  85. S. Colombo, P. Battaini, and G. Airoldi, “Precipitation kinetics in Ag–7.5 wt % Cu alloy studied by isothermal DSC and electricalresistance measurements,” J. Alloys Compd. 437, 107–112 (2007).

    Article  CAS  Google Scholar 

  86. D. Hamana, M. Hachouf, L. Boumaza, and Z. E. A. Biskri, “Precipitation kinetics and mechanism in Cu–7 wt. % Ag alloy,” Mater. Sci. Appl. 2, No. 7, 899–910 (2011).

    CAS  Google Scholar 

  87. G. Wloch, K. Sokolowski, P. Ostachowski, A. Wicher, and J. Sobota, “Decomposition of supersaturated solid solution during non-isothermal aging and its effect on the physical properties and microstructure of the Ag–Cu7.5 alloy,” J. Mater. Eng. Perform., No. 12, 1–7 (2019).

  88. S. K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, “Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures,” Mater. Lett. 59, 629–632 (2005).

    Article  CAS  Google Scholar 

  89. H. Fröck, M. Graser, B. Milkereit, M. Reich, M. Lechner, M. Merklein, and O. Kessler, “Precipitation behaviour and mechanical properties during short-term heat treatment for tailor heat treated profiles (THTP) of aluminium alloy 6060,” Mater. Sci. Forum, The 15th International Conference on Aluminium Precipitation (Behaviour and Mechanical Properties). 877, 400–406 (2017).

  90. Fröck H., B. Milkereit, P. Wiechmann, A. Springer, M. Sander, O. Kessler, and M. Reich, “Influence of solution-annealing parameters on the continuous cooling precipitation of aluminum alloy 6082,” Metals 8, No. 265, 1–16 (2018).

    Article  CAS  Google Scholar 

  91. R. H. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, and O. Kessler, “In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al–Mn–Fe–Si(–Mg) alloys,” Mater. Des. 146, No. 15, 96–107 (2018).

    Article  CAS  Google Scholar 

  92. J. Osten, B. Milkereit, C. Schick, and O. Kessler, “Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates,” Materials 8, No. 5, 2830–2848 (2015).

    Article  CAS  Google Scholar 

  93. Introduction to Thermal Analysis, Ed. by M. E. Brown (Kliwer, New York, 2001).

    Google Scholar 

  94. L. V. Spivak and N. E. Shchepina, “Calorimetric effects during phase transformations in duralumin,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 11, No. 3, 376–380 (2014).

    Google Scholar 

  95. L. V. Spivak and N. E. Shchepina, “Differential scanning calorimetry of the processes of dissolution and separation of the intermetallic phase in the α-solid solution of alloy D1,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 19, No. 2, 170–175 (2019).

    Google Scholar 

  96. V. V. Slezov and V. V. Sagalovich, “Diffusion decomposition of solid solutions,” Usp. Fiz. Nauk 151, 67–104 (1987).

    Article  CAS  Google Scholar 

  97. Sudzuki, K., Fudzimora, H., Hasimoto, K., Amorphous Metals (Metallurgiya, Moscow, 1987).

    Google Scholar 

  98. G. E. Abrosimova, “Evolution of structure of amorphous alloys,” Usp. Fiz. Nauk 181, No. 12, 1265–1281 (2011).

    Article  Google Scholar 

  99. L. Collins, N. Grant, and J. Sande, “Crystallizations of amorphous Ni60Nb40,” J. Mater. Sci. 18, 804–814 (1983).

    Article  CAS  Google Scholar 

  100. W. Zhang and A. Inoue, “Effects of Ti on the thermal stability and glass-forming ability of Ni–Nb glassy alloy,” Mater. Trans. 43, No. 9, 2342–2345 (2002).

    Article  CAS  Google Scholar 

  101. H. Choi-Yim, D. Xu, and W. L. Johnson, “Ni-based bulk metallic glass – alloy system,” J. Appl. Phys. Lett. 82, 1030–1032 (2003).

    Article  CAS  Google Scholar 

  102. L. Shadowspeaker and R. Busch, “On the fragility of Nb–Ni based and Zr-based bulk metallic glasses,” J. Appl. Phys. Lett. 85, 2508–2510 (2004).

    Article  CAS  Google Scholar 

  103. S. Matsumoto, T. Tokunaga, H. Ohtani, and M. Hasebe, “Thermodynamic analysis of the phase equilibria of the Nb–Ni–Ti system,” Mater. Trans. 46, No. 12, 2920–2930 (2005).

    Article  CAS  Google Scholar 

  104. H. Choi-Yim, D. Xu, M. L. Lind, J. F. LoËfflec, and W. L. Johnson, “Structure and mechanical properties of bulk glass-forming Ni–Nb–Sn alloys,” Scr. Mater. 54, 187–190 (2006).

    Article  CAS  Google Scholar 

  105. L. V. Spivak, “Calorimetric effects during crystallization of an amorphous alloy Nb60Ni40,” Vestnik Permskogo Universiteta. Seriya: Fizika, No. 3, 60–63 (2015).

    Google Scholar 

  106. S. P. Alisova and P. B. Budberg, Phase Diagrams of Metallic Systems, Ed. by N. V. Ageev, No. 18. (VINITI, 1975), p. 268 [in Russian].

  107. M. G. Vasin and V. I. Lad’yanov, “Structural transitions and non-monotonic relaxation processes in liquid metals,” Phys. Rev. E 68, 051202-1–051202-6 (2003).

    Article  CAS  Google Scholar 

  108. V. I. Lad’yanov, A. L. Bel’tyukov, V. V. Maslov, A. I. Shishmarin, M. G. Vasin, V. K. Nosenko, and V. A. Mashira, “Viscosity of glass forming alloys based on Fe–Si–B system,” J. Non-Cryst. Solids 353, 3264–3268 (2007).

    Article  CAS  Google Scholar 

  109. M. Scott Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “A conform al solution theory for the energy land scapean glass transition of mixtures,” Fluid Phase Equilib. 241, 147–154 (2006).

    Article  CAS  Google Scholar 

  110. P. Schloßmacher, N. Boucharat, H. Rösner, G. Wilde, and A. V. Shelyakov, Crystallization Studies of amorphous melt-spun Ti50Ni25Cu25,” EEICOMAT’02. (2002). Paper Index #O237.

  111. D. V. Louzguine and A. J. Inoue, “Structural basis for supercooled liquid fragility established by synchrotron-radiation method,” Mater. Sci. 35, 4159–4164 (2000).

    Article  CAS  Google Scholar 

  112. M. Buchwitz, R. Adlwarth-Dieball, and P. L. Ryder, “Kinetics of the crystallization of amourphous Ti2Ni,” Acta Metall. 41, 1885–1892 (1993).

    Article  CAS  Google Scholar 

  113. P. L. Potapov, A. V. Shelyakov, and D. Schryvers, “On the crystal structure of TiNi–Cu martensite,” Scr. Mater. 44, No. 1, 1–7 (2001).

    Article  CAS  Google Scholar 

  114. H. Rösner, P. Schlossmacher, A. V. Shelyakov, and A. M. Glezer, “The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys,” Acta Mater. 49, 1541–1548 (2001).

    Article  Google Scholar 

  115. A. M. Glezer, “Amorphous-crystalline microstructures of heat-treated, melt-spun Ti50Ni25Cu25 ribbons,” Acta Mater. 49, 1541–1548 (2001).

    Article  Google Scholar 

  116. V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys with thermomechanical shape-memory effects,” Phys. Met. Metallogr. 116, No. 12, 1221–1233 (2015).

    Article  Google Scholar 

  117. V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016).

    Article  CAS  Google Scholar 

  118. V. G. Pushin, A. V. Pushin, N. N. Kuranova, T. E. Kuntsevich, A. N. Uksusnikov, V. P. Dyakina, and N. I. Kourov, “Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti32Hf18Cu5 alloy in the ultrafine-grained state,” Phys. Met. Metallogr. 117, No. 12, 1261–1269 (2016).

    Article  CAS  Google Scholar 

  119. V. G. Pushin, A. V. Pushin, and N. N. Kuranova, “Specific features of the atomic structure of the Ti50Ni25Cu25 alloy amorphized during rapid quenching from a melt,” Phys. Met. Metallogr. 120, No. 2, 164–170 (2019).

    Article  CAS  Google Scholar 

  120. V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect,” Tech. Phys. 61, 1009–1014 (2016).

    Article  CAS  Google Scholar 

  121. L. V. Spivak and I. V. Lunegov, “On the problem of the existence of crystallization nuclei in amorphous metal alloys,” Vestnik Permskogo Universiteta. Fizika, No. 2, 33–35 (2013).

    Google Scholar 

  122. L. V. Spivak and A. V. Shelyakov, “Activation energy and thermal activation parameters of the crystallization process of rapidly quenched TiNi-based alloys,” Izv. RAN. Fiz. 73, No. 9, 1337–1339 (2008).

    Google Scholar 

  123. L. V. Spivak, D. I. Sidorov, and A. V. Shelyakov, “Differential calorimetry of crystallization processes during heating of rapidly quenched alloys Ti50Ni25Cu25 and Ti39.2Ni24.8Hf10Cu25,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 26–29 (2010).

  124. Ch. Chui, Introduction to Wavelets (Mir, Moscow, 2001).

  125. A. A. Koronovskii and A. E. Khramov, Continuous Wavelet Analysis and its Applications (Fizmatlit, Moscow, 2003) [in Russian]

    Google Scholar 

  126. M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, Berlin, 2011), p. 530.

    Book  Google Scholar 

  127. W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans Tech Publications, Uetikon-Zuerich, 1998), 4th ed., p, 305.

  128. L. V. Spivak, A. V. Shelyakov, and L. N. Malinina, “Features of the crystallization process of hydrogen-containing amorphous alloys based on the system TiNi–TiCu,” Vestnik Permskogo Un-Ta, No. 1, 102–105 (2010).

    Google Scholar 

  129. L. V. Spivak and A. V. Shelyakov, " Crystallization processes in hydrogen-containing amorphous alloys based on TiNiCuHf systems,“ Vestnik Permskogo Un-ta, Fizika, No. 1, 107–110 (2010).

    Google Scholar 

  130. L. V. Spivak, A. V. Shelyakov, and N. E. Shchepina, “General laws of the effect of hydrogen on the crystallization of amorphous alloys based on the quasi-binary TiNi–TiCu system,” Tech. Phys. 84, No. 2, 52–56 (2014).

    Google Scholar 

  131. E. Stepura, V. Rosenband, and A. Gany, “Investigation of high temperature self-propagating combustion synthesis of titanium hydride,” Third European Combustion Meeting; ECM 2007 (Crete, 2007), pp. 1–6.

  132. B. Metijasevic-Lux, J. Banhart, S. Fiechter, O. Goerke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54, 1887–1900 (2006).

    Article  CAS  Google Scholar 

  133. P. G. Berezhko, A. I. Tarasova, A. A. Kuznetsov, I. V. Anfilov, I. K. Kremzukov, and A. G. Leshchinskaya, “Hydrogenation of titanium and zirconium and thermal decomposition of their hydrides,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 11, 47–56 (2006).

  134. L. V. Spivak, “Calorimetric effects during heating of Pd–H alloys,” Al’Ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010).

  135. A. V. Luk’yanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, No. 4, 374–382 (2018).

    Article  Google Scholar 

  136. N. N. Kuranova, A. V. Pushin, V. G. Pushin, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Zr alloys with high-temperature shape memory effects,” Phys. Met. Metallogr. 119, No. 6, 582–588 (2018).

    Article  CAS  Google Scholar 

  137. A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, No. 12, 1159–1165 (2019).

    Article  CAS  Google Scholar 

  138. V. G. Pushin, N. N. Kuranova, E. B. Marchenkova, and A. V. Pushin, “Deformation-induced atomic disordering and bcc → fcc transformation in Heusler alloy Ni54Mn21Ga25 subjected to megaplastic deformation by high pressure torsion,” Phys. Met. Metallogr. 121, No. 4, 300–336 (2020).

    Article  Google Scholar 

  139. E. B. Marchenkova, V. G. Pushin, V. A. Kazantsev, A. V. Korolev, N. I. Kourov, and A. V. Pushin, “Thermoelastic martensite transformations and the properties of ultrafine-grained Ni54Mn20Fe1Ga25 alloys obtained by melt quenching,” Phys. Met. Metallogr. 119, No. 10, 936–945 (2018).

    Article  CAS  Google Scholar 

  140. E. A. Golovkova, A. V. Surkov, and G. F. Syrykh, “Crystallization of amorphous Zr-Be alloys,” Phys. Solid State 57, No. 2, 266–269 (2015).

    Article  CAS  Google Scholar 

  141. V. I. Tkach, E. A. Sviridova, S. V. Vasil’ev, and O. V. Kovalenko, “Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients,” Phys. Met. Metallogr. 118, No. 8, 764–772 (2017).

    Article  Google Scholar 

  142. O. V. Kovalenko, E. A. Sviridova, S. V. Vasil’ev, V. V. Burkhovetskii, and V. I. Tkach, “Effective diffusion coefficients and structure of metal glasses AL90Y10 and AL87NI8LA5 at temperatures of onset of crystallization,” Fiz. Tekh. Vys. Davlenii 27, No. 4, 79–92 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Spivak.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, L.V., Shchepina, N.E. Calorimetric Effects in the Structural and Phase Transitions of Metals and Alloys. Phys. Metals Metallogr. 121, 968–995 (2020). https://doi.org/10.1134/S0031918X20100117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20100117

Keywords:

Navigation