Skip to main content

Fast Scanning Calorimetry of Phase Transitions in Metals

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

Quantitative analysis of phase transitions in metals under exceptional conditions is still a challenge. Thanks to the development of nanotechnology and microelectromechanical systems, fast scanning calorimetry (FSC) has been developed, providing an ideal instrument to study phase transitions under extremely nonequilibrium conditions. For one thing, the ultrafast scanning rate up to 106 K/s can simulate some realistic conditions, e.g., gas atomization, 3D printing, and laser forming, to monitor in situ the phase transition process and reveal its mechanism. For another, the ultrahigh sensitivity, less than 1 nJ/K, makes it possible to capture phase transitions in micro- and even nano-sized materials and therefore to study the size effect on phase transitions. In addition, more and more analytical methods such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are combined with FSC to realize structural characterization. In this chapter, we review applications of FSC in melting, solidification, and solid-state phase transition of metallic materials to demonstrate the unique phenomena revealed by this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481

    Article  Google Scholar 

  2. Kim BJ, Tersoff J, Kodambaka S, Reuter MC, Stach EA, Ross FM (2008) Kinetics of individual nucleation events observed in nanoscale vapor–liquid-solid growth. Science 322:1070

    Article  Google Scholar 

  3. Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Bouar YL, Braidy N, Loiseau A (2009) Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat Mater 8:940

    Article  Google Scholar 

  4. Siwick BJ, Dwyer JR, Jordan RE, Miller RJD (2003) An atomic-level view of melting using femtosecond electron diffraction. Science 302:1382

    Article  Google Scholar 

  5. Jun WK, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold-silicon alloys. Nature 187:869

    Google Scholar 

  6. Lavernia EJ, Srivatsan TS (2009) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45:287

    Article  Google Scholar 

  7. Schulli TU, Daudin R, Renaud G, Vaysset A, Geaymond O, Pasturel A (2010) Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 464:1174

    Article  Google Scholar 

  8. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259

    Article  Google Scholar 

  9. Schroers J, Masuhr A, Johnson WL (1999) Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Phys Rev B 60:11855

    Article  Google Scholar 

  10. Yang B, Perepezko JH, Schmelzer JW, Gao Y, Schick C (2014) Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter. J Chem Phys 140:104513

    Article  Google Scholar 

  11. Denlinger DW, Abarra EN, Allen K, Rooney PW, Messer MT, Watson SK, Hellman F (1994) Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K. Rev Sci Instrum 65:946

    Article  Google Scholar 

  12. Allen LH, Ramanath G, Lai SL, Ma Z (1994) 1 000 000 °C/s thin film electrical heater: In situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett 64:417

    Article  Google Scholar 

  13. van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432:192

    Article  Google Scholar 

  14. Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177

    Article  Google Scholar 

  15. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1

    Article  Google Scholar 

  16. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99

    Article  Google Scholar 

  17. Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Discrete periodic melting point observations for nanostructure ensembles. Phys Rev Lett 85:3560

    Article  Google Scholar 

  18. Lopeandía AF, Ll C, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejo J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104

    Article  Google Scholar 

  19. Lopeandía AF, León-Gutierrez E, Rodríguez-Viejo J, Muñoz FJ (2007) Design issues involved in the development of a membrane-based high-temperature nanocalorimeter. Microelectron Eng 84:1288

    Article  Google Scholar 

  20. Lopeandía AF, Pi F, Rodríguez-Viejo J (2008) Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel. Appl Phys Lett 92:122503

    Article  Google Scholar 

  21. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55

    Article  Google Scholar 

  22. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902

    Article  Google Scholar 

  23. Merzlyakov M (2006) Method of rapid (100000 K s−1) controlled cooling and heating of thin samples. Thermochim Acta 442:52

    Article  Google Scholar 

  24. Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256

    Article  Google Scholar 

  25. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1

    Article  Google Scholar 

  26. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14

    Article  Google Scholar 

  27. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Schick C (2013) Beating the heat-fast scanning melts silk beta sheet crystals. Sci Rep 3:1

    Article  Google Scholar 

  28. Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786

    Article  Google Scholar 

  29. Jiang J, Zhuravlev E, Huang Z, Wei L, Xu Q, Shan M, Xue G, Zhou D, Schick C, Jiang W (2013) A transient polymorph transition of 4-cyano-4'-octyloxybiphenyl (8OCB) revealed by ultrafast differential scanning calorimetry (UFDSC). Soft Matter 9:1488

    Article  Google Scholar 

  30. Gao Y, Zhuravlev E, Zou C, Yang B, Zhai Q, Schick C (2009) Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim Acta 482:1

    Article  Google Scholar 

  31. Yang B, Gao Y, Zou C, Zhai Q, Abyzov AS, Zhuravlev E, Schmelzer JWP, Schick C (2010) Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl Phys A 104:189

    Article  Google Scholar 

  32. Yang B, Abyzov AS, Zhuravlev E, Gao Y, Schmelzer JW, Schick C (2013) Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. J Chem Phys 138:054501

    Article  Google Scholar 

  33. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46

    Article  Google Scholar 

  34. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36

    Article  Google Scholar 

  35. Pogatscher S, Uggowitzer PJ, Löffler JF (2014) In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. Appl Phys Lett 104:251908

    Article  Google Scholar 

  36. McCluskey PJ, Vlassak JJ (2006) Parallel nano-differential scanning calorimetry: a new device for combinatorial analysis of complex nano-scale material systems. In: Misra A et al (eds) 2006 MRS spring meeting. Materials Research Society, San Francisco, p 133

    Google Scholar 

  37. Lee D, Sim G-D, Xiao K, Vlassak JJ (2014) Low-temperature synthesis of ultra-high-temperature coatings of ZrB2 using reactive multilayers. J Phys Chem C 118:21192

    Article  Google Scholar 

  38. McCluskey PJ, Zhao C, Kfir O, Vlassak JJ (2011) Precipitation and thermal fatigue in Ni-Ti-Zr shape memory alloy thin films by combinatorial nanocalorimetry. Acta Mater 59:5116

    Article  Google Scholar 

  39. Cook LP, Cavicchi RE, Bassim N, Eustis S, Wong-Ng W, Levin I, Kattner UR, Campbell CE, Montgomery CB, Egelhoff WF, Vaudin MD (2009) Enhanced mass transport in ultrarapidly heated Ni/Si thin-film multilayers. J Appl Phys 106:104909

    Article  Google Scholar 

  40. Gusev EP, Narayanan V, Frank MM (2006) Advanced high-κ dielectric stacks with polySi and metal gates: recent progress and current challenges. IBM J Res Dev 50:387

    Article  Google Scholar 

  41. Molina-Ruiz M, Lopeandía AF, González-Silveira M, Anahory Y, Guihard M, Garcia G, Clavaguera-Mora MT, Schiettekatte F, Rodríguez-Viejo J (2013) Formation of Pd2Si on single-crystalline Si (100) at ultrafast heating rates: an in-situ analysis by nanocalorimetry. Appl Phys Lett 102:143111

    Article  Google Scholar 

  42. Molina-Ruiz M, Lopeandía AF, Gonzalez-Silveira M, Garcia G, Peral I, Clavaguera-Mora MT, Rodríguez-Viejo J (2014) Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude. Appl Phys Lett 105:013113

    Article  Google Scholar 

  43. Swaminathan P, Grapes MD, Woll K, Barron SC, LaVan DA, Weihs TP (2013) Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. J Appl Phys 113:143509

    Article  Google Scholar 

  44. Gregoire JM, McCluskey PJ, Dale D, Ding S, Schroers J, Vlassak JJ (2012) Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scripta Mater 66:178

    Article  Google Scholar 

  45. Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry. J Synchrotron Radiat 21:223

    Article  Google Scholar 

  46. Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Appl Phys Lett 67:1229

    Article  Google Scholar 

  47. Takagi M (1954) Electron-diffraction study of liquid–solid transition of thin metal films. J Phys Soc Jpn 9:359

    Article  Google Scholar 

  48. Zhang M, Efremov MY, Olson EA, Zhang ZS, Allen LH (2002) Real-time heat capacity measurement during thin-film deposition by scanning nanocalorimetry. Appl Phys Lett 81:3801

    Article  Google Scholar 

  49. Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62:10548

    Article  Google Scholar 

  50. Olson EA, Efremov MY, Zhang M, Zhang Z, Allen LH (2005) Size-dependent melting of Bi nanoparticles. J Appl Phys 97:034304

    Article  Google Scholar 

  51. Zhang M, Olson EA, Twesten RD, Wen JG, Allen LH, Robertson IM, Petrov I (2005) In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res 20:1802

    Article  Google Scholar 

  52. Gregoire JM, Xiao K, McCluskey PJ, Dale D, Cuddalorepatta G, Vlassak JJ (2013) X-ray diffraction combined with scanning AC nanocalorimetry applied to a FeNi thin-film sample. Appl Phys Lett 102:201902

    Article  Google Scholar 

  53. Turnbull D, Cech RE (1950) Microscopic observation of the solidification of small metal droplets. J Appl Phys 21:804

    Article  Google Scholar 

  54. Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198

    Article  Google Scholar 

  55. Turnbull D (1950) The subcooling of liquid metals. J Appl Phys 20:817

    Article  Google Scholar 

  56. Lopeandía AF, Rodríguez-Viejo J (2007) Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film. Thermochim Acta 461:82

    Article  Google Scholar 

  57. Swaminathan P, LaVan DA, Weihs TP (2011) Dynamics of solidification in Al thin films measured using a nanocalorimeter. J Appl Phys 110:113519

    Article  Google Scholar 

  58. Zhao B, Li L, Yang B, Yan M, Zhai Q, Gao Y (2013) Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry. J Alloy Compd 580:386

    Article  Google Scholar 

  59. Gao Y, Zou C, Yang B, Zhai Q, Liu J, Zhuravle E, Schick C (2009) Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. J Alloy Compd 484:777

    Article  Google Scholar 

  60. Zhao B, Zhao J, Zhang W, Yang B, Zhai Q, Schick C, Gao Y (2013) Fast scanning calorimetric measurements and microstructure observation of rapid solidified Sn3.5Ag solder droplets. Thermochim Acta 565:194

    Article  Google Scholar 

  61. Cahn RW (1986) Melting and the surface. Nature 323:668

    Article  Google Scholar 

  62. Simon C, Peterlechner M, Wilde G (2015) Experimental determination of the nucleation rates of undercooled micron-sized liquid droplets based on fast chip calorimetry. Thermochim Acta 603:39

    Article  Google Scholar 

  63. Yang B, Gao Y, Zou C, Zhai Q, Zhuravlev E, Schick C (2009) Repeated nucleation in an undercooled tin droplet by fast scanning calorimetry. Mater Lett 63:2476

    Article  Google Scholar 

  64. Xiao K, Vlassak JJ (2015) Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques. Thermochim Acta 603:29

    Article  Google Scholar 

  65. Li L, Yang B, Zhao B, Abyzov AS, Schmelzer JWP, Schick C, Lu F, Zhai Q, Gao Y (2014) Rapid solidification behavior of nano-sized Sn droplets embedded in the Al matrix by nanocalorimetry. Mater Res Express 1:045012

    Article  Google Scholar 

  66. Li L, Zhao B, Yang B, Zhang Q, Zhai Q, Gao Y (2014) Nanocalorimetric characterization of the heterogeneous nucleation of rapidly solidified bismuth droplets embedded in a zinc matrix. JOM-J Miner Met Mater Soc 67(12):2881–2886

    Article  Google Scholar 

  67. Li L, Zhao B, Yang B, Zhang Q, Zhai Q, Gao Y (2015) Cooling rate dependent undercooling of Bi in a Zn matrix by differential fast scanning calorimetry. J Mater Res 30:242

    Article  Google Scholar 

  68. Zhao B, Li L, Zhai Q, Gao Y (2013) Formation of amorphous structure in Sn3.5Ag droplet by in situ fast scanning calorimetry controllable quenching. Appl Phys Lett 103:131913

    Article  Google Scholar 

  69. Desré P, Yavari A (1990) Suppression of crystal nucleation in amorphous layers with sharp concentration gradients. Phys Rev Lett 64:1533

    Article  Google Scholar 

  70. Hodaj F, Gusak AM, Desre PJ (1998) Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Phil Mag A 77:1471

    Article  Google Scholar 

  71. McCluskey PJ, Vlassak JJ (2011) Combinatorial nanocalorimetry. J Mater Res 25:2086

    Article  Google Scholar 

  72. McCluskey PJ, Vlassak JJ (2011) Glass transition and crystallization of amorphous Ni-Ti-Zr thin films by combinatorial nano-calorimetry. Scripta Mater 64:264

    Article  Google Scholar 

  73. Motemani Y, McCluskey PJ, Zhao C, Tan MJ, Vlassak JJ (2011) Analysis of Ti-Ni-Hf shape memory alloys by combinatorial nanocalorimetry. Acta Mater 59:7602

    Article  Google Scholar 

  74. Tsao CS, Chen CY, Jeng US, Kuo TY (2006) Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys. Acta Mater 54:4621

    Article  Google Scholar 

  75. Keller J, Baither D, Wilke U, Schmitz G (2011) Mechanical properties of Pb-free SnAg solder joints. Acta Mater 59:2731

    Article  Google Scholar 

  76. Kummamuru RK, De La Rama L, Hu L, Vaudin MD, Efremov MY, Green ML, LaVan DA, Allen LH (2009) Measurement of heat capacity and enthalpy of formation of nickel silicide using nanocalorimetry. Appl Phys Lett 95:181911

    Article  Google Scholar 

  77. Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc 29:995

    Article  Google Scholar 

  78. Wang JQ, Chen N, Liu P, Wang Z, Louzguine-Luzgin DV, Chen MW, Perepezko JH (2014) The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater 79:30

    Article  Google Scholar 

  79. Pogatscher S, Leutenegger D, Hagmann A, Uggowitzer PJ, Löffler JF (2014) Characterization of bulk metallic glasses via fast differential scanning calorimetry. Thermochim Acta 590:84

    Article  Google Scholar 

  80. Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE (2012) Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater 11:279–283

    Article  Google Scholar 

  81. Schmelzer JW, Tropin TV (2013) Dependence of the width of the glass transition interval on cooling and heating rates. J Chem Phys 138:034507

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51171105 and 50971086), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. TP2014042), the project-based Personnel Exchange Program (PPP, Grant No. 201400260146) and the 085 project in Shanghai University, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, Y., Zhao, B., Yang, B., Schick, C. (2016). Fast Scanning Calorimetry of Phase Transitions in Metals. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_21

Download citation

Publish with us

Policies and ethics