Skip to main content
Log in

Microstructure and Mechanical Properties of 1050 Aluminum after the Combined Processes of Constrained Groove Pressing and Cold Rolling

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The present work compares the microstructure and mechanical properties of 1050 aluminum subjected to constrained groove pressing (CGP) combined with cold rolling. Transmission electron microscopy observations showed that four passes of CGP refines the grain size to ~1.4 μm. Combining the CGP with cold rolling (rolling at a room temperature) brings about further reduction of the grain size and a significant improvement of the mechanical properties. It also changes the tensile deformation behavior of 1050 aluminum. The stress-strain curves of further cold rolled samples displayed a yield point phenomenon. A combination of high strength exceeding 300 MPa and good elongation to failure approaching 20% was obtained for 1050 aluminum after processing by 4 passes of CGP combined with subsequent 80% cold rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  2. R. W. Armstrong, “60 years of Hall–Petch: Past to present nano-scale connections,” Mater. Trans. 55, 2–12 (2014).

    Article  CAS  Google Scholar 

  3. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

    Article  CAS  Google Scholar 

  4. V. V. Popov, E. N. Popova, A. V. Stolbovsky, and R. M. Falahutdinov, “Evolution of the structure of Cu–1% Sn bronze under high pressure torsion and subsequent annealing,” Phys. Met. Metallogr. 119, 358–367 (2018).

    Article  CAS  Google Scholar 

  5. O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).

    Article  CAS  Google Scholar 

  6. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, “Useful properties of twist extrusion,” Mater. Sci. Eng., A 503, 14–17 (2009).

    Article  Google Scholar 

  7. W. Pachla, M. Kulczyk, S. Przybysz, and J. Skiba, “Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2,” J. Mater. Process. Technol. 221, 255–268 (2015).

    Article  CAS  Google Scholar 

  8. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process,” Acta Mater. 47, 579– 583 (1999).

    Article  CAS  Google Scholar 

  9. Y. H. Ji and J. J. Park, “Development of severe plastic deformation by various asymmetric rolling processes,” Mater. Sci. Eng., A 499, 14–17 (2009).

    Article  Google Scholar 

  10. J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).

    Article  Google Scholar 

  11. D. H. Shin, J. J. Park, Y. S. Kim, and K. T. Park, “Constrained groove pressing and its application to grain refinement of aluminum,” Mater. Sci. Eng., A 328, 98–103 (2002).

    Article  Google Scholar 

  12. J. Lee and J. Park, “Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement,” J. Mater. Process. Technol. 130–131, 208–213 (2002).

    Article  Google Scholar 

  13. H. Yu, K. Tieu, and C. Lu, “Advanced rolling technologies for producing ultrafine-grain/nanostructured alloys,” Procedia Eng. 81, 96–101 (2014).

    Article  CAS  Google Scholar 

  14. A.K. Gupta, T.S. Maddukuri, and S.K. Singh, “Constrained groove pressing for sheet metal processing,” Prog. Mater. Sci. 84, 403–462 (2016).

    Article  CAS  Google Scholar 

  15. S. Morattab, K. Ranjbar, and M. Reihanian, “On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing,” Mater. Sci. Eng., A 528, 6912–6918 (2011).

    Article  CAS  Google Scholar 

  16. F. Khodabakhshi, M. Kazeminezhad, and A. Kokabi, “Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties,” Mater. Sci. Eng., A 527, 4043–4049 (2010).

    Article  Google Scholar 

  17. E. Hosseini and M. Kazeminezhad, “RETRACTED: Nanostructure and mechanical properties of 0–7 strained aluminum by CGP: XRD, TEM and tensile test,” Mater. Sci. Eng., A 526, 219–224 (2009).

    Article  Google Scholar 

  18. K. Peng, X. Mou, J. Zeng, L. L Shaw, and K. W. Qian, “Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing,” Comput. Mater. Sci. 50, 1526–1532 (2011).

    Article  CAS  Google Scholar 

  19. K. Hajizadeh, S. Ejtemaei, and B. Eghbali, “Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing,” J. Appl. Phys. 504, 123–132 (2017).

    Google Scholar 

  20. S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminum sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).

    Article  CAS  Google Scholar 

  21. S. S. Satheesh Kumar and T. Raghu, “Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets,” J. Mater. Process. Technol. 213, 214–220 (2013).

    Article  CAS  Google Scholar 

  22. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Rabb, and R. Z. Valiev, “Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes,” Mater. Sci. Eng., A 554, 105–115 (2012).

    Article  CAS  Google Scholar 

  23. E. A. El-Danaf, M. S. Soliman, and A. A. Almajid, “EBSD investigation of the microstructure and microtexture evolution of 1050 aluminum cross deformed from ECAP to plane strain compression,” J. Mater. Sci. 46, 3291–3308 (2011).

    Article  CAS  Google Scholar 

  24. S. S. Hazra, A. A. Gazder, A. Carman, and E. V. Pereloma, “Effect of cold rolling on as–ECAP interstitial free steel,” Metall. Mater. Trans. A 42, 1334–1348 (2011).

    Article  CAS  Google Scholar 

  25. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling,” Mater. Sci. Eng., A. 343, 43–50 (2003).

    Article  Google Scholar 

  26. K. Hajizadeh and B. Eghbali, “Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium,” Met. Mater. Int. 20, 343–350 (2014).

    Article  CAS  Google Scholar 

  27. V. I. Zel’dovich, E. V. Shorokhov, S. V. Dobatkin, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, “Structure and mechanical properties of titanium subjected to high-rate channel angular pressing and deformation by rolling,” Phys. Met. Metallogr. 111, 421–429 (2011).

    Article  Google Scholar 

  28. K. X. Wei, W. We, F. Wang, Q. B. Du, I. V. Alexandrov, and J. Hu, “Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5% Cr alloy processed by severe plastic deformation,” Mater. Sci. Eng., A 528, 1478–1484 (2011).

    Article  Google Scholar 

  29. M. Cabibbo, E. Evangelista, and C. Scalabroni, “EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing,” Micron 36, 401–414 (2005).

    Article  CAS  Google Scholar 

  30. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Annu. Rev. Mater. Res. 40, 319–343 (2010).

    Article  CAS  Google Scholar 

  31. P. L. Sun, E. K. Cerreta, G. T. Gray, and J. F. Bingert, “The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum,” Metall. Mater. Trans. A 37, 2983–2994 (2006).

    Article  Google Scholar 

  32. E. Bruder, “Mechanical Properties of ARMCO® iron after large and severe plastic deformation — Application potential for precursors to ultrafine grained microstructures,” Metals 8, 191–203 (2018).

    Article  Google Scholar 

  33. E. O. Hall, Yield Point Phenomena in Metals and Alloys (Plenum, New York, 1970), pp. 16–23 and 171–200.

  34. B. J. Brindley and P. J. Worthington, “Yield-point phenomena in substitutional alloys,” Met. Mater. Metall. Rev. 4, 101–114 (1970).

    Article  Google Scholar 

  35. C. Y. Yu, P. W. Kao, and C. P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum,” Acta Mater. 53, 4019–4028 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hajizadeh.

Ethics declarations

The authors would like to thank Sahand University of Technology for their technical support, which made this research possible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, K., Ejtemaei, S., Eghbali, B. et al. Microstructure and Mechanical Properties of 1050 Aluminum after the Combined Processes of Constrained Groove Pressing and Cold Rolling. Phys. Metals Metallogr. 121, 72–77 (2020). https://doi.org/10.1134/S0031918X20010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20010081

Keywords:

Navigation