Skip to main content

Advertisement

Log in

Effect of Cold Rolling on as–ECAP Interstitial Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-stabilized interstitial free steel subjected to eight passes, route BC room temperature equal channel angular pressing (ECAP) additionally was cold rolled (CR) up to 95 pct thickness reduction. Electron back-scattering diffraction and transmission electron microscopy characterized microstructural refinement and microtexture evolution, whereas the mechanical properties were assessed by uniaxial tensile tests. After 95 pct CR, the average high-angle grain boundary spacing reduces to 0.14 μm, whereas the high-angle boundary fraction increases to ~81 pct. The ECAP negative simple shear texture components rotate by ~15 deg around the transverse direction toward the rolling direction for up to 50 pct CR, with typical rolling textures observed at 95 pct CR. The decrease in boundary spacing produces a ~500 MPa gain in 0.2 pct proof stress, a ~600 MPa increase in ultimate tensile strength (UTS), and a ~4 pct loss in total elongation after 95 pct CR. Similar rates of decrease in work hardening correspond to comparable rates of cross and/or multiple slip events irrespective of the processing regime and substructural refinement. The fracture mode of the tensile samples changes from ductile to brittle type between ECAP and 95 pct CR and is attributed to the reduced work hardening capacity of the latter. The modified Hall–Petch equation shows that the convergence of high-angle boundary spacing values with their low-angle counterparts results in an increased contribution via boundary strengthening to the 0.2 pct proof stress and UTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. IDBs and GNBs are primarily TEM-based terms for the characterization of deformed microstructures whose EBSD-based equivalents are LAGBs and HAGBs, respectively. The latter nomenclature has been adopted in the present study.

References

  1. B. Han, E. Lavernia, and F. Mohamed: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1343-50.

    Article  CAS  Google Scholar 

  2. F.D. Torre, A. Gazder, C. Gu, C. Davies, and E. Pereloma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1080-95.

    Article  Google Scholar 

  3. F.D. Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2004, vol. 52, no. 16, pp. 4819-32.

    Article  Google Scholar 

  4. A.A. Gazder, W. Cao, C.H.J. Davies, and E.V. Pereloma: Mater. Sci. Eng. A, 2008, vol. 497, nos. 1-2, pp. 341-52.

    Google Scholar 

  5. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng. A, 2004, vols. 375-377, pp. 178-85.

    Google Scholar 

  6. P.B. Prangnell, Y. Huang, M. Berta, and P.J. Apps: Mater. Sci. Forum., 2007, vol. 550, p. 159.

    Article  CAS  Google Scholar 

  7. K. Furuno, H. Akamatsu, K. Oh-ishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2004, vol. 52, no. 9, pp. 2497-2507.

    Article  CAS  Google Scholar 

  8. T. Langdon, M. Furukawa, M. Nemoto, and Z. Horita: JOM, 2000, vol. 52, no. 4, pp. 30-33.

    Article  CAS  Google Scholar 

  9. K. Oh-Ishi, Z. Horita, M. Nemoto, M. Furukawa, and T. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2011-13.

    Article  CAS  Google Scholar 

  10. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, no. 7, pp. 881-981.

    Article  CAS  Google Scholar 

  11. T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan: Acta Mater., 2005, vol. 53, no. 2, pp. 393-402.

    Article  CAS  Google Scholar 

  12. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, no. 11, pp. 3239-50.

    Article  CAS  Google Scholar 

  13. N. Kamikawa, T. Sakai, and N. Tsuji: Acta Mater., 2007, vol. 55, no. 17, pp. 5873-88.

    Article  CAS  Google Scholar 

  14. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov: Adv. Eng. Mater., 2006, vol. 8, no. 11, pp. 1046-56.

    Article  CAS  Google Scholar 

  15. A. Vorhauer and R. Pippan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 417-29.

    Article  CAS  Google Scholar 

  16. Y. Huang and P.B. Prangnell: Acta Mater., 2008, vol. 56, no. 7, pp. 1619-32.

    Article  CAS  Google Scholar 

  17. A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Scripta Mater., 2002, vol. 46, no. 8, pp. 575-80.

    Article  CAS  Google Scholar 

  18. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, no. 6, pp. 1359-68.

    Article  CAS  Google Scholar 

  19. Y.M. Wang and E. Ma: Acta Mater., 2004, vol. 52, no. 6, pp. 1699-709.

    Article  CAS  Google Scholar 

  20. A.P. Zhilyaev, J. Gubicza, S. Surinach, M.D. Baro, and T.G. Langdon: Mater. Sci. Forum., 2003, vols. 426-32, pp. 4507-12.

    Article  Google Scholar 

  21. S. Ferrasse, V.M. Segal, and F. Alford: Mater. Sci. Eng. A, 2004, vol. 372, no. 1-2, pp. 44-55.

    Google Scholar 

  22. J. Kusnierz, W. Baliga, and J. Bogucka: XIX Conference on Applied Crystallography, World Science Publishing. Co., Warsaw, Poland, 2003, pp. 181-84.

    Google Scholar 

  23. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, no. 11, pp. 4619-29.

    Article  CAS  Google Scholar 

  24. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1997, vol. 45, no. 11, pp. 4751-57.

    Article  CAS  Google Scholar 

  25. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Acta Mater., 1996, vol. 44, no. 12, pp. 4705-12.

    Article  CAS  Google Scholar 

  26. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, no. 7, pp. 2467-75.

    Article  CAS  Google Scholar 

  27. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, no. 7, pp. 2973-82.

    Article  CAS  Google Scholar 

  28. N. Hansen: Scripta Mater., 2004, vol. 51, no. 8, pp. 801-06.

    Article  CAS  Google Scholar 

  29. S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, no. 4, pp. 1087-1100.

    Article  CAS  Google Scholar 

  30. F.J. Humphreys: J. Micro., 1999, vol. 195, no. 3, pp. 170-85.

    Article  CAS  Google Scholar 

  31. R. Hielscher and H. Schaeben: J. App. Cryst., 2008, vol. 41, no. 6, pp. 1024-37.

    Article  CAS  Google Scholar 

  32. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1995.

    Google Scholar 

  33. B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, no. 4, pp. 1069-81.

    Article  CAS  Google Scholar 

  34. D.A. Hughes: Mater. Sci. Eng. A, 2001, vols. 319-21, pp. 46-54.

    Google Scholar 

  35. S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2007, vol. 55, no. 3, pp. 1017-32.

    Article  CAS  Google Scholar 

  36. S. Li and I.J. Beyerlein: Model. Siml. Mater. Sci. Eng., 2005, vol. 13, no. 4, pp. 509-30.

    Article  Google Scholar 

  37. A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Kimura, and Y. Mishima: Mater. Sci. Eng. A, 2007, vol. 456, nos. 1-2, pp. 323-31.

    Article  Google Scholar 

  38. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, Boston, MA, 1986.

    Google Scholar 

  39. Y. Ding, J. Jiang, and A. Shan: J. Alloy Compd., 2009, vol. 487, nos. 1–2, pp. 517-21.

    Article  CAS  Google Scholar 

  40. D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, no. 12, pp. 3495-3509.

    Article  CAS  Google Scholar 

  41. Y. Estrin, K. Rhee, R. Lapovok, and P.F. Thomson: J. Eng. Mater. Tech., 2007, vol. 129, no. 3, pp. 380-89.

    Article  CAS  Google Scholar 

  42. B. Han, F. Mohamed, and E. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 71-83.

    Article  CAS  Google Scholar 

  43. J.E. Carsley, W.W. Milligan, X.H. Zhu, and E.C. Aifantis: Scripta Mater., 1997, vol. 36, no. 6, pp. 727-32.

    Article  CAS  Google Scholar 

  44. S. Tamimi, M. Ketabchi, and N. Parvin: Mater. Des., 2009, vol. 30, no. 7, pp. 2556-62.

    Article  CAS  Google Scholar 

  45. D.T.A. Matthews, V. Ocelík, P.M. Bronsveld, and J.T.M. De Hosson: Acta Mater., 2008, vol. 56, no. 8, pp. 1762-73.

    Article  CAS  Google Scholar 

  46. R.Y. Lapovok: J. Mater. Sci., 2005, vol. 40, no. 2, pp. 341-46.

    Article  CAS  Google Scholar 

  47. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  48. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    CAS  Google Scholar 

  49. M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, and N. Tsuji: Mater. Charact., 2008, vol. 59, no. 9, pp. 1312-23.

    Article  CAS  Google Scholar 

  50. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, no. 15, pp. 3789-02.

    Article  CAS  Google Scholar 

  51. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, no. 11, pp. 2985-3004.

    Article  CAS  Google Scholar 

  52. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57, no. 14, pp. 4198-208.

    Article  CAS  Google Scholar 

  53. S. Takaki, K. Kawasaki, and Y. Kimura: J. Mater. Pro. Tech., 2001, vol. 117, no. 3, pp. 359-63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Mark Thompson and Mr. Zoran Mitic of BlueScope Steel Research Laboratories, Port Kembla, Australia for cold rolling at their laboratory mill and to Professor F.J. Humphreys (UMIST, United Kingdom) for the VMAP software package. One of the authors (SSH) is grateful to Tata Steel, India for study leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy S. Hazra.

Additional information

Manuscript submitted March 8, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, S.S., Gazder, A.A., Carman, A. et al. Effect of Cold Rolling on as–ECAP Interstitial Free Steel. Metall Mater Trans A 42, 1334–1348 (2011). https://doi.org/10.1007/s11661-010-0535-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0535-5

Keywords

Navigation