Skip to main content
Log in

The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercial purity aluminum AA1050 was subjected to equal channel angular extrusion (ECAE) that resulted in an ultrafine-grained (UFG) microstructure with an as-received grain size of 0.35 µm. This UFG material was then annealed to obtain microstructures with grain sizes ranging from 0.47 to 20 µm. Specimens were compressed at quasi-static, intermediate, and dynamic strain rates at temperatures of 77 and 298 K. The mechanical properties were found to vary significantly with grain size, strain rate, and temperature. Yield stress was found to increase with decreasing grain size, decreasing temperature, and increasing strain rate. The work hardening rate was seen to increase with increasing grain size, decreasing temperature, and increasing strain rate. The influence of strain rate and temperature is most significant in the smallest grain size specimens. The rate of work hardening is also influenced by strain rate, temperature, and grain size with negative rates of work hardening observed at 298 K and quasi-static strain rates in the smallest grain sizes and increasing rates of work hardening with increasing loading rate and grain size. Work hardening behavior is correlated with the substructural evolution of these specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Segal, V.L. Reznikov, A.E. Drobysheveskiy, and V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 115–23.

    Google Scholar 

  2. V.M. Segal: Mater. Sci. Eng., A, 1995, vol. 197, pp. 157–64.

    Article  Google Scholar 

  3. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4733–41.

    Article  CAS  Google Scholar 

  4. P.L. Sun, P.W. Kao, and C.P. Chang: Mater. Sci. Eng., A, 2000, vol. 283, pp. 82–85.

    Article  Google Scholar 

  5. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10.

    Article  CAS  Google Scholar 

  6. J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Mater. Sci. Forum, 2000, vol. 331–337, pp. 545–50.

    Google Scholar 

  7. A. Gholinia, P.B. Prangnell, and M.V. Markushev: Acta Mater., 2000, vol. 48, pp. 1115–30.

    Article  CAS  Google Scholar 

  8. T.L. Tsai, P.L. Sun, P.W. Kao, and C.P. Chang: Mater. Sci. Eng., A, 2003, vol. 342, pp. 144–51.

    Article  Google Scholar 

  9. P. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1013–18.

    Article  Google Scholar 

  10. S. Ferrasse, V.M. Segal, K.T. Hartwig, and R.E. Goforth: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1047–57.

    Article  CAS  Google Scholar 

  11. D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–509.

    Article  CAS  Google Scholar 

  12. J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2261–71.

    Article  CAS  Google Scholar 

  13. G.T. Gray, III, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov: Nanostruct. Mater., 1997, vol. 9, pp. 477–80.

    Article  CAS  Google Scholar 

  14. C.Y. Yu, P.L. Sun, P.W. Kao, and C.P. Chang: Scripta Mater., 2005, vol. 52, pp. 359–63.

    Article  CAS  Google Scholar 

  15. H. Van Swygenhoven, A. Caro, and D. Farkas: Scripta Mater., 2001, vol. 44, pp. 1513–16.

    Article  Google Scholar 

  16. H. Van Swygenhoven: Science, 2002, vol. 296, pp. 66–67.

    Article  Google Scholar 

  17. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8.

    CAS  Google Scholar 

  18. T.G. Nieh and J. Wadsworth: Scripta Metall., 1991, vol. 25, pp. 955–58.

    Article  CAS  Google Scholar 

  19. P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth: Acta Mater., 2003, vol. 51, pp. 6059–75.

    Article  CAS  Google Scholar 

  20. P.L. Sun, C.Y. Yu, P.W. Kao, and C.P. Chang: Scripta Mater., 2002, vol. 47, pp. 377–81.

    Article  CAS  Google Scholar 

  21. C.P. Chang, P.L. Sun, and P.W. Kao: Acta Mater., 2000, vol. 48, pp. 3377–85.

    Article  CAS  Google Scholar 

  22. J.K. Mackenzie: Biometrica, 1958, vol. 45, pp. 229–40.

    Google Scholar 

  23. C.Y. Yu, P.L. Sun, P.W. Kao, and C.P. Chang: Mater. Sci. Eng. A, 2004, vol. 366, pp. 310–17.

    Article  CAS  Google Scholar 

  24. C.Y. Yu: Ph.D. Thesis, National Sun Yat-Sen University, Taiwan, 2003.

    Google Scholar 

  25. D. Jia, K.T. Ramesh, and E. Ma: Scripta Mater., 2000, vol. 42, pp. 73–78.

    CAS  Google Scholar 

  26. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  27. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  28. P.L. Sun, P.W. Kao, and C.P. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1359–68.

    CAS  Google Scholar 

  29. D.J. Lloyd: Met. Sci., 1980, vol. 14, pp. 193–98.

    CAS  Google Scholar 

  30. Q. Wei, D. Jia, T. Ramesh, and E. Ma: Appl. Phys. Lett., 2002, vol. 81, pp. 1240–42.

    Article  CAS  Google Scholar 

  31. D.J. Jensen, A.W. Thompson, and N. Hansen: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2803–10.

    CAS  Google Scholar 

  32. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., New York, NY, 1986, pp. 231–33.

    Google Scholar 

  33. A.W. Thompson, M.I. Baskes, and W.F. Flangan: Acta Metall., 1973, vol. 21, pp. 1017–28.

    Article  CAS  Google Scholar 

  34. G.T. Gray, III, S.R. Chen, and K.S. Vecchio: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1235–47.

    CAS  Google Scholar 

  35. H. Mecking: Deformation of Polycrystals: Mechanisms and Microstructures, Riso National Laboratory, Roskilde, Demark, 1981, pp. 73–86.

    Google Scholar 

  36. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  37. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259–71.

    Article  CAS  Google Scholar 

  38. Y.M. Wang and E. Ma: Mater. Sci. Eng., A, 2004, vols. 375–377, pp. 46–52.

    Google Scholar 

  39. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng., A, 2004, vol. 381, pp. 71–79.

    Article  CAS  Google Scholar 

  40. H. Conrad and J. Narayan: Acta Mater., 2002, vol. 50, pp. 5067–78.

    Article  CAS  Google Scholar 

  41. R.J. Asaro and S. Suresh: Acta Mater., 2005, vol. 53, pp. 3369–82.

    Article  CAS  Google Scholar 

  42. H. Conrad: Mater. Sci. Eng., A, 2003, vol. 341, pp. 216–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, P.L., Cerreta, E.K., Gray, G.T. et al. The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum. Metall Mater Trans A 37, 2983–2994 (2006). https://doi.org/10.1007/s11661-006-0180-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0180-1

Keywords

Navigation