Skip to main content
Log in

Structure and Mechanical Properties of Aluminum 1560 Alloy after Severe Plastic Deformation by Groove Pressing

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes the structure and mechanical properties of sheet-rolled Al 1560 alloy after four cycles of groove pressing. The analysis shows that under quasi-static uniaxial tension at a strain rate of 1 s-1, the offset yield strength of the groove-pressed alloy and its ultimate strength are respectively 1.4 and 1.5 times higher than their values in the as-received state. The ultimate tensile strain of the alloy after pressing is 17% against 21% in the as-received state, and its microhardness is 2.7 times higher. According to an electron backscatter diffraction analysis, the groove-pressed alloy has a bimodal structure composed of elongated coarse grains and agglomerates of equiaxed grains of micron and submicron sizes. When pressed, the alloy increases the density of its grain boundaries with a misorientation angle of less than 15° and changes its texture from rolling to upsetting whose volume during pressing grows. Part of the grain orientations in both states corresponds to recrystallization. The research data suggest that groove pressing provides grain structure refinement via plastic distortion in Al 15 60 alloy and a considerable increase in its strength properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z., Creation of Nanostructured Metals and Alloys with Unique Properties Using Severe Plastic Deformation, Ross. Nanotekhnol., 2006, vol. 1, pp. 208–216.

    Google Scholar 

  2. Valiev, R.Z., Alexandrov, I.V., Nanostructured Materials Produced by Severe Plastic Deformation, Moscow: Logos, 2000.

    Google Scholar 

  3. Kozlov, E.V., Koneva, N.A., Zhdanov, A.N., Popova, N.A., and Ivanov, Yu.F., Structure and Resistance to Deformation of FCC Ultrafine–Grained Metals and Alloys, Fiz. Mezomekh2004, vol. 7, no. 4, pp. 93–113.

  4. Panin, V.E., Deryugin, E.E., and Kul'kov, S.N., Mesomechanics of Material Strengthening by Nanodisperse Inclusions, J. Appl. Mech. Tech. Phys., 2010, vol. 51, no. 4, pp. 555–568.

    Article  ADS  MATH  Google Scholar 

  5. Kozulin, A.A., Skripnyak, V.A., Krasnoveikin, V.A., Skripnyak, V.V., and Karavatskii, A.K., An Investigation of Physico–Mechanical Properties of Ultrafine–Grained Magnesium Alloys Subjected to Severe Plastic Deformation, Russ. Phys. J., 2015, vol. 57, no. 9, pp. 1261–1267.

    Article  Google Scholar 

  6. Panin, V.E. and Egorushkin, V.E., Physical Mesomechanics of Crystal Structure Refinement upon Severe Plastic Deformation, Phys. Mesomech., 2008, vol. 11, no. 5–6, pp.203–212.

    Google Scholar 

  7. Zha, M., Yanjun, Li, Mathiesen, R., Bjorge, R., and Roven, H., Microstructure Evolution and Mechanical Behavior of a Binary Al–7Mg Alloy Processed by Equal–Channel Angular Pressing, Acta Mater., 2015, vol. 84, pp. 42–54.

    Article  Google Scholar 

  8. Dadbakhsha, S., Taheri, A.K., and Smith, C.W., Strengthening Study on 6082 Al Alloy after Combination of Aging Treatment and ECAP Process, Mater. Sci. Eng. A, 2010, vol. 527, pp. 4758–4766.

    Article  Google Scholar 

  9. Estrin, Y. and Vinogradov, A., Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  10. Shin, D.H., Park, J., Kim, Y., and Park, K., Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, vol. 328, pp. 98–103.

    Article  Google Scholar 

  11. Krishnaiah, A., Chakkingal, U., and Venugopal, P., Production of Ultrafine Grain Sizes in Aluminum Sheets by Severe Plastic Deformation Using the Technique of PHYSICAL MESOMECHANICS Vol. 21 No. 6 2018 Groove Pressing, Scripta Mater., 2005, vol. 52, pp. 1229–1233.

    Article  Google Scholar 

  12. Krishnaiah, A., Chakkingal, U., and Venugopal, P., Applicability of Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 337–340.

    Article  Google Scholar 

  13. Thirugnanam, A., Sampath Kumar, T.S., and Chakkingal, U., Tailoring the Bioactivity of Commercially Pure Titanium by Grain Refinement Using Groove Pressing, Mate. Sci. Eng., 2010, vol. 30, no. 1, pp. 203–208.

    Google Scholar 

  14. Ratna Sunil, B., Anil Kumar, A., Sampath Kumar, T.S., and Chakkingal, U., Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing, Mater. Sci. Eng., 2013, vol. 33, pp. 1607–1615.

    Google Scholar 

  15. Pashinskaya, E.G., Varyukhin, V.N., Zavdoveev, A.V., Burkhovetskii, V.V., and Glazunova, V.A., Electron Backscattered Diffraction Method in the Analysis of Deformed Steel Structures, Deform. Razrush. Mater., 2012, no. 6, pp. 35–40.

    Google Scholar 

  16. Musabirov, I.I., Structural Analysis of N MnGa Alloy by Means of Electron Back Scattering Diffraction Method, Lett. Mater., 2013, no. 3, pp. 20–24.

    Article  Google Scholar 

  17. Salimyanfarda, F., Toroghinejada, M.R., Ashrafizadeha, F., and Jafari, M., EBSD Analysis of Nano–Structured Copper Processed by ECAP, Mater. Sci. Eng. A, 2011, vol. 528, pp. 5348–5355.

    Article  Google Scholar 

  18. Samiha, Y., Beausira, B., Bollea, B., and Grosdidier, T., In–Depth Quantitative Analysis of the Microstructures Produced by Surface Mechanical Attrition Treatment (SMAT), Mater. Character., 2013, vol. 83, pp. 129–138.

    Article  Google Scholar 

  19. Stráskáa, J., JaneKeka, M., Cízekb, J., Stráskya, J., and Hadzimac, B., Microstructure Stability of Ultra–Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal–Channel Angular Pressing (EX–ECAP), Mater. Character., 2014, vol. 94, pp. 69–79.

    Article  Google Scholar 

  20. Shirdel, A., Khajeh, A., and Moshksar, M.M., Experimental and Finite Element Investigation of Semi–Constrained Groove Pressing Process, Mater. Design, 2010, vol. 31, pp. 946–950.

    Article  Google Scholar 

  21. Chen, Y., Hjelen, J., and Roven, H.J., Application of EBSD Technique to Ultrafine Grained and Nanostructured Materials Processed by Severe Plastic Deformation: Sample Preparation, Parameters Optimization and Analysis, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1801–1809.

    Article  Google Scholar 

  22. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbookfor Materials Science, New York: Plenum Press, 1996.

    Book  Google Scholar 

  23. Markushev, M.V. and Murashkin, M.Yu., Structure and Mechanical Properties of Commercial Al–Mg 1560Alloy after Equal–Channel Agular Extrusion and Annealing, Mater. Sci. Eng. A, 2004, vol. 367(1–2), pp. 234–242.

    Google Scholar 

  24. Khodabakhshi, F., Haghshenas, M., Eskandari, H., and Koohbor, B., Hardness–Strength Relationships in Fine and Ultra–Fine Grained Metals Processed through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, vol. 636, pp. 331–339.

    Article  Google Scholar 

  25. Kozulin, A.A., Krasnoveikin, V.A., Skripnyak, V.V., Khandaev, B.V., and Li, Yu.V., Mechanical Properties of Aluminum Magnesium Alloys after Processing by a Severe Plastic Deformation Method, Sovr. Probl. Nauki Obraz., 2013, no. 6, p. 888.

    Google Scholar 

  26. Chuvildeev, V.N., Gryaznov, M.Yu., Kopylov, V.I., Sysoyev, A.N., Ovsyannikov, B.V., and Flyagin, A.A., Mechanical Properties of Microcrystalline AMg6 Aluminum Alloy, Vestnik Nizhny Novgorod State Univ., 2008, no. 4, pp. 35–42.

    Google Scholar 

  27. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.

    Article  Google Scholar 

  28. Avtokratova, E.V., Mukhametdinova, O.E., Sitdikov, O.Sh., and Markushev, M.V., High Strain Rate Superplasticity of an 1570C aluminum alloy with bimodal structure obtained by equal–channel angular pressing and rolling, Lett. Mater., 2015, vol. 5, no. 2, pp. 129–132.

    Article  Google Scholar 

  29. El–Danaf, E.A., Mechanical Properties, Microstructure and Texture of Single Pass Equal Channel Angular Pressed 1050,5083, 6082 and 7010 Aluminum Alloys with Different Dies, Mater. Design, 2011, vol. 32, pp. 3838–3853.

    Google Scholar 

  30. Polukhin, P.I., Gorelik, S.S., and Vorontsov, V.K., Physical Principles of Plastic Deformation, Moscow: Metallurgia, 1982.

    Google Scholar 

  31. Panin, V.E., Panin, A.V., Elsukova, T.F., and Popkova, Yu.F., Fundamental Role of Curvature of the Crystal Structure in Plasticity and Strength of Solids, Phys. Mesomech., 2015, vol. 18, no. 2, pp. 89–99.

    Article  Google Scholar 

  32. Sarkari Khorrami, M., Kazeminezhad, M., and Kokabi, A.H., Thermal Stability during Annealing of Friction Stir Welded Aluminum Sheet Produced by Constrained Groove Pressing, Mater Design, 2013, vol. 45, pp. 222–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Moskvichev.

Additional information

Original Russian Text © E.N. Moskvichev, V.A. Skripnyak, V.V. Skripnyak, A.A. Kozulin, D.V. Lychagin’ 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 4, pp. 85–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvichev, E.N., Skripnyak, V.A., Skripnyak, V.V. et al. Structure and Mechanical Properties of Aluminum 1560 Alloy after Severe Plastic Deformation by Groove Pressing. Phys Mesomech 21, 515–522 (2018). https://doi.org/10.1134/S1029959918060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959918060061

Keywords

Navigation