Skip to main content

Advertisement

Log in

Humanized Mouse Models as a Tool to Study Proinflammatory Cytokine Overexpression

  • CYTOKINES AND THEIR PHYSIOLOGICAL FUNCTIONS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Dysregulated proinflammatory cytokine expression may result in the development of severe pathologies, such as rheumatoid arthritis, psoriasis, and neurodegenerative diseases. Transgenic mice and, in particular, those with controllable systemic overexpression of proinflammatory cytokines have recently become an essential instrument to study the molecular mechanisms underlying disease development. Importantly, many of the models are humanized by introducing a human cytokine gene, while leaving or removing the respective endogenous mouse gene. Humanized mice are especially valuable for biomedical research as they provide a relevant model to develop therapies based on blocking the pathogenic activity of a cytokine or to establish the functional significance of genome polymorphisms. The review discusses the available humanized mouse models with overexpression of key proinflammatory cytokines (TNF, IL-1β, and IL-6) and inflammatory cytokines with more specific functions (IL-8, IL-17, and IL-32) and their significance for basic and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. When describing mouse models with transgenic overexpression of human cytokines, we hereafter use the additional letter h to denote the respective human protein (e.g., hTNF), while the protein name without the additional h refers to the mouse protein.

REFERENCES

  1. Gama Sosa M.A., De Gasperi R., Elder G.A. 2010. Animal transgenesis: An overview. Brain Struct. Funct. 214, 91–109.

    Article  CAS  PubMed  Google Scholar 

  2. Keffer J., Probert L., Cazlaris H., Georgopoulos S., Kaslaris E., Kioussis D., Kollias G. 1991. Transgenic mice expressing human tumour necrosis factor: A predictive genetic model of arthritis. EMBO J. 10, 4025–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akassoglou K., Probert L., Kontogeorgos G., Kollias G. 1997. Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J. Immunol. 158, 438–445.

    CAS  PubMed  Google Scholar 

  4. Isoda K., Kamezawa Y., Tada N., Sato M., Ohsuzu F. 2001. Myocardial hypertrophy in transgenic mice overexpressing human interleukin 1alpha. J. Card. Fail. 7, 355–364.

    Article  CAS  PubMed  Google Scholar 

  5. Kitamura T., Koshino Y., Shibata F., Oki T., Nakajima H., Nosaka T., Kumagai H. 2003. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31, 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  6. Yan B.W., Zhao Y.F., Cao W.G., Li N., Gou K.M. 2013. Mechanism of random integration of foreign DNA in transgenic mice. Transgenic Res. 22, 983–992.

    Article  CAS  PubMed  Google Scholar 

  7. Soriano P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71.

    Article  CAS  PubMed  Google Scholar 

  8. Quadros R.M., Miura H., Harms D.W., Akatsuka H., Sato T., Aida T., Redder R., Richardson G.P., Inagaki Y., Sakai D., Buckley S.M., Seshacharyulu P., Batra S.K., Behlke M.A., Zeiner S.A., et al. 2017. Easi-CRISPR: A robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18, 92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Scott G.J., Gruzdev A. 2019. Genome editing in mouse embryos with CRISPR/Cas9. Methods Mol. Biol. 1960, 23–40.

    Article  PubMed  Google Scholar 

  10. Li G., Wu Y., Jia H., Tang L., Huang R., Peng Y., Zhang Y. 2016. Establishment and evaluation of a transgenic mouse model of arthritis induced by overexpressing human tumor necrosis factor alpha. Biol. Open. 5, 418–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carswell E.A., Old L.J., Kassel R.L., Green S., Fiore N., Williamson B. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. U. S. A. 72, 3666–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grivennikov S.I., Kuprash D.V., Liu Z.G., Nedospasov S.A. 2006. Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: From simple paradigms to complex mechanisms. Int. Rev. Cytol. 252, 129–161.

    Article  CAS  PubMed  Google Scholar 

  13. Kruglov A.A., Kuchmiy A., Grivennikov S.I., Tumanov A.V., Kuprash D.V., Nedospasov S.A. 2008. Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: mouse models. Cytokine Growth Factor Rev. 19, 231–244.

    Article  CAS  PubMed  Google Scholar 

  14. Old L.J. 1988. Tumor necrosis factor. Sci. Am. 258, 59–60, 69–75.

    Article  CAS  PubMed  Google Scholar 

  15. Carballo E., Lai W.S., Blackshear P.J. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science. 281, 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  16. Patel H.J., Patel B.M. 2017. TNF-alpha and cancer cachexia: Molecular insights and clinical implications. Life Sci. 170, 56–63.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y., Wang Y., Zhu M.S., Han W.M., Li Z., Hong S.F., Yin P., Zhuang G.H., Qi Z.Q. 2018. Expression pattern of tumor necrosis factor-alpha-induced protein 8-like 2 in acute rejection of cardiac allograft. Transplant. Proc. 50, 293–298.

    Article  CAS  PubMed  Google Scholar 

  18. Beutler B.A. 1989. Orchestration of septic shock by cytokines: The role of cachectin (tumor necrosis factor). Prog. Clin. Biol. Res. 286, 219–235.

    CAS  PubMed  Google Scholar 

  19. Sfikakis P.P., Kollias G. 2003. Tumor necrosis factor biology in experimental and clinical arthritis. Curr. Opin. Rheumatol. 15, 380–386.

    Article  CAS  PubMed  Google Scholar 

  20. Yamauchi P.S., Bissonnette R., Teixeira H.D., Valdecantos W.C. 2016. Systematic review of efficacy of anti-tumor necrosis factor (TNF) therapy in patients with psoriasis previously treated with a different anti-TNF agent. J. Am. Acad. Dermatol. 75, 612–618. e6.

    Article  PubMed  CAS  Google Scholar 

  21. Gorth D.J., Shapiro I.M., Risbud M.V. 2018. Transgenic mice overexpressing human TNF-alpha experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 10, 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Retser E., Schied T., Skryabin B.V., Vogl T., Kanczler J.M., Hamann N., Niehoff A., Hermann S., Eisenblatter M., Wachsmuth L., Pap T., van Lent P.L., Loser K., Roth J., Zaucke F., et al. 2013. Doxycycline-induced expression of transgenic human tumor necrosis factor alpha in adult mice results in psoriasis-like arthritis. Arthritis Rheum. 65, 2290–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Probert L., Keffer J., Corbella P., Cazlaris H., Patsavoudi E., Stephens S., Kaslaris E., Kioussis D., Kollias G. 1993. Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes. J. Immunol. 151, 1894–1906.

    CAS  PubMed  Google Scholar 

  24. Drutskaya M.S., Efimov G.A., Zvartsev R.V., Chashchina A.A., Chudakov D.M., Tillib S.V., Kruglov A.A., Nedospasov S.A. 2014. Experimental models of arthritis in which pathogenesis is dependent on TNF expression. Biochemistry (Moscow). 79 (12), 1349–1357.

    CAS  PubMed  Google Scholar 

  25. Franciotta D.M., Grimaldi L.M., Martino G.V., Piccolo G., Bergamaschi R., Citterio A., Melzi d’Eril G.V. 1989. Tumor necrosis factor in serum and cerebrospinal fluid of patients with multiple sclerosis. Ann. Neurol. 26, 787–789.

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y.S., Lee K.J., Kim H. 2017. Serum tumour necrosis factor-alpha and interleukin-6 levels in Alzheimer’s disease and mild cognitive impairment. Psychogeriatrics. 17, 224–230.

    Article  PubMed  Google Scholar 

  27. Zimmerman A.W., Jyonouchi H., Comi A.M., Connors S.L., Milstien S., Varsou A., Heyes M.P. 2005. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr. Neurol. 33, 195–201.

    Article  PubMed  Google Scholar 

  28. Dinarello C.A. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishikawa K., Yoshida M., Kusuhara M., Ishigami N., Isoda K., Miyazaki K., Ohsuzu F. 2006. Left ventricular hypertrophy in mice with a cardiac-specific overexpression of interleukin-1. Am. J. Physiol. Heart Circ. Physiol. 291, H176–H183.

    Article  CAS  PubMed  Google Scholar 

  30. Niki Y., Yamada H., Seki S., Kikuchi T., Takaishi H., Toyama Y., Fujikawa K., Tada N. 2001. Macrophage- and neutrophil-dominant arthritis in human IL-1 alpha transgenic mice. J. Clin. Invest. 107, 1127–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaftel S.S., Carlson T.J., Olschowka J.A., Kyrkanides S., Matousek S.B., O’Banion M.K. 2007. Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J. Neurosci. 27, 9301–9309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hein A.M., Stasko M.R., Matousek S.B., Scott-McKean J.J., Maier S.F., Olschowka J.A., Costa A.C., O’Banion M.K. 2010. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253.

    Article  CAS  PubMed  Google Scholar 

  33. Tu S., Bhagat G., Cui G., Takaishi S., Kurt-Jones E.A., Rickman B., Betz K.S., Penz-Oesterreicher M., Bjorkdahl O., Fox J.G., Wang T.C. 2008. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 14, 408–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marrache F., Tu S.P., Bhagat G., Pendyala S., Osterreicher C.H., Gordon S., Ramanathan V., Penz-Osterreicher M., Betz K.S., Song Z., Wang T.C. 2008. Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology. 135, 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  35. Lappalainen U., Whitsett J.A., Wert S.E., Tichelaar J.W., Bry K. 2005. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am. J. Respir. Cell Mol. Biol. 32, 311–318.

    Article  CAS  PubMed  Google Scholar 

  36. Bjorkdahl O., Akerblad P., Gjorloff-Wingren A., Leanderson T., Dohlsten M. 1999. Lymphoid hyperplasia in transgenic mice over-expressing a secreted form of the human interleukin-1beta gene product. Immunology. 96, 128–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. 1987. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. U. S. A. 84, 7251–7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity. 41, 529–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. 2004. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Irwin M.R. 2011. Inflammation at the intersection of behavior and somatic symptoms. Psychiatr. Clin. North Am. 34, 605–620.

    Article  PubMed  Google Scholar 

  41. Behm B., Babilas P., Landthaler M., Schreml S. 2012. Cytokines, chemokines and growth factors in wound healing. J. Eur. Acad. Dermatol. Venereol. 26, 812–820.

    Article  CAS  PubMed  Google Scholar 

  42. Suematsu S., Matsusaka T., Matsuda T., Ohno S., Miyazaki J., Yamamura K., Hirano T., Kishimoto T. 1992. Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 89, 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ebisui C., Tsujinaka T., Morimoto T., Kan K., Iijima S., Yano M., Kominami E., Tanaka K., Monden M. 1995. Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2C12 myotubes. Clin. Sci. (Lond.). 89, 431–439.

    Article  CAS  Google Scholar 

  44. Tsujinaka T., Ebisui C., Fujita J., Kishibuchi M., Morimoto T., Ogawa A., Katsume A., Ohsugi Y., Kominami E., Monden M. 1995. Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem. Biophys. Res. Commun. 207, 168–174.

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura H., Kawata H., Takahashi F., Higuchi Y., Furuichi T., Ohkawa H. 1995. Bone marrow neutrophilia and suppressed bone turnover in human interleukin-6 transgenic mice. A cellular relationship among hematopoietic cells, osteoblasts, and osteoclasts mediated by stromal cells in bone marrow. Am. J. Pathol. 147, 1682–1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Katsume A., Saito H., Yamada Y., Yorozu K., Ueda O., Akamatsu K., Nishimoto N., Kishimoto T., Yoshizaki K., Ohsugi Y. 2002. Anti-interleukin 6 (IL-6) receptor antibody suppresses Castleman’s disease like symptoms emerged in IL-6 transgenic mice. Cytokine. 20, 304–311.

    Article  CAS  PubMed  Google Scholar 

  47. Suematsu S., Matsuda T., Aozasa K., Akira S., Nakano N., Ohno S., Miyazaki J., Yamamura K., Hirano T., Kishimoto T. 1989. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 86, 7547–7551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fattori E., Lazzaro D., Musiani P., Modesti A., Alonzi T., Ciliberto G. 1995. IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage. Eur. J. Neurosci. 7, 2441–2449.

    Article  CAS  PubMed  Google Scholar 

  49. De Benedetti F., Alonzi T., Moretta A., Lazzaro D., Costa P., Poli V., Martini A., Ciliberto G., Fattori E. 1997. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Benedetti F., Meazza C., Oliveri M., Pignatti P., Vivarelli M., Alonzi T., Fattori E., Garrone S., Barreca A., Martini A. 2001. Effect of IL-6 on IGF binding protein-3: A study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology. 142, 4818–4826.

    Article  CAS  PubMed  Google Scholar 

  51. Fattori E., Della Rocca C., Costa P., Giorgio M., Dente B., Pozzi L., Ciliberto G. 1994. Development of progressive kidney damage and myeloma kidney in interleukin-6 transgenic mice. Blood. 83, 2570–2579.

    Article  CAS  PubMed  Google Scholar 

  52. Lieskovska J., Guo D., Derman E. 2002. IL-6-overexpression brings about growth impairment potentially through a GH receptor defect. Growth Horm. IGF Res. 12, 388–398.

    Article  CAS  PubMed  Google Scholar 

  53. DiCosmo B.F., Geba G.P., Picarella D., Elias J.A., Rankin J.A., Stripp B.R., Whitsett J.A., Flavell R.A. 1994. Airway epithelial cell expression of Interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity. J. Clin. Invest. 94, 2028–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuhn C., 3rd, Homer R.J., Zhu Z., Ward N., Flavell R.A., Geba G.P., Elias J.A. 2000. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am. J. Respir. Cell Mol. Biol. 22, 289–295.

    Article  CAS  PubMed  Google Scholar 

  55. Zvartsev R.V., Korshunova D.S., Gorshkova E.A., Nosenko M.A., Korneev K.V., Maksimenko O.G., Korobko I.V., Kuprash D.V., Drutskaya M.S., Nedospasov S.A., Deikin A.V. 2018. Neonatal lethality and inflammatory phenotype of the new transgenic mice with overexpression of human interleukin-6 in myeloid cells. Dokl. Biochem. Biophys. 483, 344–347.

    Article  CAS  PubMed  Google Scholar 

  56. Campbell I.L., Abraham C.R., Masliah E., Kemper P., Inglis J.D., Oldstone M.B., Mucke L. 1993. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. U. S. A. 90, 10061–10065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Turksen K., Kupper T., Degenstein L., Williams I., Fuchs E. 1992. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 89, 5068–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lieskovska J., Guo D., Derman E. 2003. Growth impairment in IL-6-overexpressing transgenic mice is associated with induction of SOCS3 mRNA. Growth Horm. IGF Res. 13, 26–35.

    Article  CAS  PubMed  Google Scholar 

  59. De Benedetti F., Rucci N., Del Fattore A., Peruzzi B., Paro R., Longo M., Vivarelli M., Muratori F., Berni S., Ballanti P., Ferrari S., Teti A. 2006. Impaired skeletal development in interleukin-6-transgenic mice: A model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563.

    Article  CAS  PubMed  Google Scholar 

  60. Korneev K.V., Sviryaeva E.N., Drutskaya M.S., Kuprash D.V., Nedospasov S.A. 2016. Development of a system for inducing Cre-dependent human interleukin-6 production in mouse and human cells. Ross. Immunol. Zh. 10, 188–192.

    Google Scholar 

  61. Drutskaya M.S., Gogoleva V.S., Atretkhany K.-S.N., Gubernatorova E.O., Zvartsev R.V., Nosenko M.A., Nedospasov S.A. 2018. Proinflammatory and immunoregulatory functions of interleukin 6 as identified by reverse genetics. Mol. Biol. (Moscow). 52 (6), 836–845.

    Article  CAS  Google Scholar 

  62. Gorshkova E.A., Zvartsev R.V., Nosenko M.A., Korneev K.V., Kuprash D.V., Drutskaya M.S., Deikin A.V., Nedospasov S.A. 2018. A transgenic mouse with human interleukin-6 overexpression in myeloid cells. In Abstr. V Mezhd. konf. “POSTGENOM’2018. V poiskakh modelei personalizirovannoi meditsiny (POSTGENOME’2018: In Search of Personalized Medicine Models, Abstr. 5th Int. Conf.). Kazan: Kazan. Gos. Univ., p. 269.

  63. Zeilhofer H.U., Schorr W. 2000. Role of interleukin-8 in neutrophil signaling. Curr. Opin. Hematol. 7, 178–182.

    Article  CAS  PubMed  Google Scholar 

  64. Elliott M.J., Finn A.H. 1993. Interaction between neutrophils and endothelium. Ann. Thorac. Surg. 56, 1503–1508.

    Article  CAS  PubMed  Google Scholar 

  65. Rot A. 1991. Chemotactic potency of recombinant human neutrophil attractant/activation protein-1 (interleukin-8) for polymorphonuclear leukocytes of different species. Cytokine. 3, 21–27.

    Article  CAS  PubMed  Google Scholar 

  66. Simonet W.S., Hughes T.M., Nguyen H.Q., Trebasky L.D., Danilenko D.M., Medlock E.S. 1994. Long-term impaired neutrophil migration in mice overexpressing human interleukin-8. J. Clin. Invest. 94, 1310–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim M.R., Manoukian R., Yeh R., Silbiger S.M., Danilenko D.M., Scully S., Sun J., DeRose M.L., Stolina M., Chang D., Van G.Y., Clarkin K., Nguyen H.Q., Yu Y.B., Jing S., et al. 2002. Transgenic overexpression of human IL-17E results in eosinophilia, B-lymphocyte hyperplasia, and altered antibody production. Blood. 100, 2330–2340.

    Article  CAS  PubMed  Google Scholar 

  68. Park M.H., Yoon D.Y., Ban J.O., Kim D.H., Lee D.H., Song S., Kim Y., Han S.B., Lee H.P., Hong J.T. 2015. Decreased severity of collagen antibody and lipopolysaccharide-induced arthritis in human IL-32beta overexpressed transgenic mice. Oncotarget. 6, 38566–38577.

    PubMed  PubMed Central  Google Scholar 

  69. Yun H.M., Kim J.A., Hwang C.J., Jin P., Baek M.K., Lee J.M., Hong J.E., Lee S.M., Han S.B., Oh K.W., Choi D.Y., Yoon D.Y., Hong J.T. 2015. Neuroinflammatory and amyloidogenic activities of IL-32 beta in Alzheimer’s disease. Mol. Neurobiol. 52, 341–352.

    Article  CAS  PubMed  Google Scholar 

  70. Jung Y.Y., Katila N., Neupane S., Shadfar S., Ojha U., Bhurtel S., Srivastav S., Son D.J., Park P.H., Yoon D.Y., Hong J.T., Choi D.Y. 2017. Enhanced dopaminergic neurotoxicity mediated by MPTP in IL-32 beta transgenic mice. Neurochem. Int. 102, 79–88.

    Article  CAS  PubMed  Google Scholar 

  71. Haak S., Croxford A.L., Kreymborg K., Heppner F.L., Pouly S., Becher B., Waisman A. 2009. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69.

    CAS  PubMed  Google Scholar 

  72. Croxford A.L., Karbach S., Kurschus F.C., Wortge S., Nikolaev A., Yogev N., Klebow S., Schuler R., Reissig S., Piotrowski C., Brylla E., Bechmann I., Scheller J., Rose-John S., Thomas Wunderlich F., et al. 2014. IL‑6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J. Invest. Dermatol. 134, 728–735.

    Article  CAS  PubMed  Google Scholar 

  73. Karbach S., Croxford A.L., Oelze M., Schuler R., Minwegen D., Wegner J., Koukes L., Yogev N., Nikolaev A., Reissig S., Ullmann A., Knorr M., Waldner M., Neurath M.F., Li H., et al. 2014. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler. Thromb. Vasc. Biol. 34, 2658–2668.

    Article  CAS  PubMed  Google Scholar 

  74. Kim S.H., Han S.Y., Azam T., Yoon D.Y., Dinarello C.A. 2005. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 22, 131–142.

    CAS  PubMed  Google Scholar 

  75. Nold M.F., Nold-Petry C.A., Pott G.B., Zepp J.A., Saavedra M.T., Kim S.H., Dinarello C.A. 2008. Endogenous IL-32 controls cytokine and HIV-1 production. J. Immunol. 181, 557–565.

    Article  CAS  PubMed  Google Scholar 

  76. Li W., Yang F., Liu Y., Gong R., Liu L., Feng Y., Hu P., Sun W., Hao Q., Kang L., Wu J., Zhu Y. 2009. Negative feedback regulation of IL-32 production by iNOS activation in response to dsRNA or influenza virus infection. Eur. J. Immunol. 39, 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  77. Bai X., Ovrutsky A.R., Kartalija M., Chmura K., Kamali A., Honda J.R., Oberley-Deegan R.E., Dinarello C.A., Crapo J.D., Chang L.Y., Chan E.D. 2011. IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease. Int. Immunol. 23, 679–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heinhuis B., Koenders M.I., van de Loo F.A., Netea M.G., van den Berg W.B., Joosten L.A. 2011. Inflammation-dependent secretion and splicing of IL-32 gamma in rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A. 108, 4962–4967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang S., Guo G.L., Yang L.L., Sun L.Q. 2017. Elevated serum levels of ghrelin and TNF-alpha in patients with cyanotic and acyanotic congenital heart disease. World J. Pediatr. 13, 122–128.

    Article  CAS  PubMed  Google Scholar 

  80. Jiang X.G., Yang X.D., Lv Z., Zhuang P.H. 2018. Elevated serum levels of TNF-alpha, IL-8, and ECP can be involved in the development and progression of bronchial asthma. J. Asthma. 55, 111–118.

    Article  CAS  PubMed  Google Scholar 

  81. Ciebiera M., Wlodarczyk M., Wrzosek M., Wojtyla C., Blazej M., Nowicka G., Lukaszuk K., Jakiel G. 2018. TNF-alpha serum levels are elevated in women with clinically symptomatic uterine fibroids. Int. J. Immunopathol. Pharmacol. 32, 2058738418779461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chen Y.L., Qiao Y.C., Xu Y., Ling W., Pan Y.H., Huang Y.C., Geng L.J., Zhao H.L., Zhang X.X. 2017. Serum TNF-alpha concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis. Immunol. Lett. 186, 52–58.

    Article  CAS  PubMed  Google Scholar 

  83. Luo Y., He H., Zhang M., Huang X., Fan N. 2016. Altered serum levels of TNF-alpha, IL-6 and IL-18 in manic, depressive, mixed state of bipolar disorder patients. Psychiatry Res. 244, 19–23.

    Article  CAS  PubMed  Google Scholar 

  84. Ozler K., Aktas E., Atay C., Yilmaz B., Arikan M., Gungor S. 2016. Serum and knee synovial fluid matrixmetalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late stage osteoarthritis. Acta Orthop. Traumatol. Turc. 50, 670–673.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Georgopoulos S., Plows D., Kollias G. 1996. Transmembrane TNF is sufficient to induce localized tissue toxicity and chronic inflammatory arthritis in transgenic mice. J. Inflamm. 46, 86–97.

    CAS  PubMed  Google Scholar 

  86. Kontoyiannis D., Pasparakis M., Pizarro T.T., Cominelli F., Kollias G. 1999. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity. 10, 387–398.

    Article  CAS  PubMed  Google Scholar 

  87. Lewis M., Tartaglia L.A., Lee A., Bennett G.L., Rice G.C., Wong G.H., Chen E.Y., Goeddel D.V. 1991. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc. Natl. Acad. Sci. U. S. A. 88, 2830–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atretkhany K.N., Mufazalov I.A., Dunst J., Kuchmiy A., Gogoleva V.S., Andruszewski D., Drutskaya M.S., Faustman D.L., Schwabenland M., Prinz M., Kruglov A.A., Waisman A., Nedospasov S.A. 2018. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 115, 13051–13056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li P., Schwarz E.M. 2003. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin. Immunopathol. 25, 19–33.

    Article  PubMed  CAS  Google Scholar 

  90. Horta-Baas G., Romero-Figueroa M.D.S., Montiel-Jarquin A.J., Pizano-Zarate M.L., Garcia-Mena J., Ramirez-Duran N. 2017. Intestinal dysbiosis and rheumatoid arthritis: A link between gut microbiota and the pathogenesis of rheumatoid arthritis. J. Immunol. Res. 2017, 4835189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Maeda Y., Takeda K. 2017. Role of gut microbiota in rheumatoid arthritis. J. Clin. Med. 6.

  92. Ruddle N.H., Bergman C.M., McGrath K.M., Lingenheld E.G., Grunnet M.L., Padula S.J., Clark R.B. 1990. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 172, 1193–1200.

    Article  CAS  PubMed  Google Scholar 

  93. Xanthoulea S., Gijbels M.J., van der Made I., Mujcic H., Thelen M., Vergouwe M.N., Ambagts M.H., Hofker M.H., de Winther M.P. 2008. P55 tumour necrosis factor receptor in bone marrow-derived cells promotes atherosclerosis development in low-density lipoprotein receptor knock-out mice. Cardiovasc. Res. 80, 309–318.

    Article  CAS  PubMed  Google Scholar 

  94. Jung I.H., Choi J.H., Jin J., Jeong S.J., Jeon S., Lim C., Lee M.R., Yoo J.Y., Sonn S.K., Kim Y.H., Choi B.K., Kwon B.S., Seoh J.Y., Lee C.W., Kim D.Y., Oh G.T. 2014. CD137-inducing factors from T cells and macrophages accelerate the destabilization of atherosclerotic plaques in hyperlipidemic mice. FASEB J. 28, 4779–4791.

    Article  CAS  PubMed  Google Scholar 

  95. Fujii S. 2015. Atherosclerosis, chronic inflammation, and thrombosis: in search of the missing link in laboratory medicine. Rinsho Byori. 63, 605–611.

    CAS  PubMed  Google Scholar 

  96. Glosli H., Prydz H., Roald B. 2004. Involution of thymus and lymphoid depletion in mice expressing the hTNF transgene. APMIS. 112, 63–73.

    Article  CAS  PubMed  Google Scholar 

  97. Rose-John S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ueda O., Tateishi H., Higuchi Y., Fujii E., Kato A., Kawase Y., Wada N.A., Tachibe T., Kakefuda M., Goto C., Kawaharada M., Shimaoka S., Hattori K., Jishage K. 2013. Novel genetically-humanized mouse model established to evaluate efficacy of therapeutic agents to human interleukin-6 receptor. Sci. Rep. 3, 1196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sitenga J., Aird G., Ahmed A., Silberstein P.T. 2018. Impact of siltuximab on patient-related outcomes in multicentric Castleman’s disease. Patient Relat. Outcome Meas. 9, 35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  100. van Hamburg J.P., Tas S.W. 2018. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 87, 69–81.

    Article  CAS  PubMed  Google Scholar 

  101. Waisman A., Hauptmann J., Regen T. 2015. The role of IL-17 in CNS diseases. Acta Neuropathol. 129, 625–637.

    Article  CAS  PubMed  Google Scholar 

  102. Malakouti M., Brown G.E., Wang E., Koo J., Levin E.C. 2015. The role of IL-17 in psoriasis. J. Dermatolog. Treat. 26, 41–44.

    Article  CAS  PubMed  Google Scholar 

  103. Chen X., Zhao S., Tang X., Ge H., Liu P. 2011. Neutralization of mouse interleukin-17 bioactivity inhibits corneal allograft rejection. Mol. Vis. 17, 2148–2156.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gorbacheva V., Fan R., Li X., Valujskikh A. 2010. Interleukin-17 promotes early allograft inflammation. Am. J. Pathol. 177, 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schleich F.N., Chevremont A., Paulus V., Henket M., Manise M., Seidel L., Louis R. 2014. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur. Respir. J. 44, 97–108.

    Article  PubMed  Google Scholar 

  106. Drago F., Cogorno L., Agnoletti A.F., Parodi A. 2015. Role of peripheral eosinophilia in adverse cutaneous drug reactions. Eur. Rev. Med. Pharmacol. Sci. 19, 2008–2009.

    CAS  PubMed  Google Scholar 

  107. Mitre E. 2013. Eosinophilia: A diagnostic clue for nonbacterial diseases in patients with systemic inflammatory response syndrome. Crit. Care Med. 41, 2464–2465.

    Article  PubMed  Google Scholar 

  108. Senra L., Mylonas A., Kavanagh R.D., Fallon P.G., Conrad C., Borowczyk-Michalowska J., Wrobel L.J., Kaya G., Yawalkar N., Boehncke W.H., Brembilla N.C. 2019. IL-17E (IL-25) enhances innate immune responses during skin inflammation. J. Invest. Dermatol. pii: S0022-202X(19)30101-0. https://doi.org/10.1016/j.jid.2019.01.021

    Article  PubMed  CAS  Google Scholar 

  109. Mosolygo T., Spengler G., Endresz V., Laczi K., Perei K., Burian K. 2013. IL-17E production is elevated in the lungs of Balb/c mice in the later stages of Chlamydia muridarum infection and re-infection. In Vivo. 27, 787–792.

    CAS  PubMed  Google Scholar 

  110. Senra L., Stalder R., Alvarez Martinez D., Chizzolini C., Boehncke W.H., Brembilla N.C. 2016. Keratinocyte-derived IL-17E contributes to inflammation in psoriasis. J. Invest. Dermatol. 136, 1970–1980.

    Article  CAS  PubMed  Google Scholar 

  111. Kang J.W., Choi S.C., Cho M.C., Kim H.J., Kim J.H., Lim J.S., Kim S.H., Han J.Y., Yoon D.Y. 2009. A proinflammatory cytokine interleukin-32 beta promotes the production of an anti-inflammatory cytokine interleukin-10. Immunology. 128, e532–e540.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Deikin for constructing the hIL-6 Tg mouse strain at the Collective Access Center of the Institute of Gene Biology (Russian Academy of Sciences) and P.V. Matveev for help in figure preparation.

Funding

This work was supported by the Russian Science Foundation (project no. 19-75-30032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Gorshkova or E. O. Gubernatorova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Tkacheva

 Abbreviations: ApoE, apolipoprotein E; ARE, AU-rich element; Cas9, CRISPR-associated protein 9; CFU, colony-forming unit; CRISPR, clustered regularly interspaced short palindromic repeat; GM-CSF, granulocyte–macrophage colony-stimulating factor; EGFP, enhanced green fluorescent protein; IL, interleukin; IL-6R, IL-6 receptor; iNOS, induced NO synthase; M-CSF, macrophage colony-stimulating factor; Th2, T helper cell type 2; TNF, tumor necrosis factor; TNFR, TNF receptor; UTR, untranslated region; ESC, embryonic stem cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, E.A., Zvartsev, R.V., Drutskaya, M.S. et al. Humanized Mouse Models as a Tool to Study Proinflammatory Cytokine Overexpression. Mol Biol 53, 665–680 (2019). https://doi.org/10.1134/S0026893319050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319050078

Keywords:

Navigation