Skip to main content

Advertisement

Log in

Mechanism of random integration of foreign DNA in transgenic mice

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Little is known about how foreign DNA is randomly integrated into chromosomes in transgenic animals. In the current study, the insertion sites of 36 transgenic mice were mapped by thermal asymmetric interlaced PCR, and 38 junction sequences were obtained from 30 samples. Analysis of the 38 sequences revealed that 44.7 % of integration events occurred within host gene regions, including 13.2 % (5/38) in exonic regions and 31.6 % (12/38) in intronic regions. The results also revealed that all non-end side integrations of foreign DNA were mediated by short sequence homologies (microhomologies) and that the end side integrations occurred in the presence or absence of microhomologies. In addition, microhomology-mediated mechanisms were also confirmed in four transgenic Arabidopsis thaliana lines. The results indicate that foreign DNA is easily integrated into host gene regions. These results also suggest that the integration of both ends of foreign DNA follows the above-mentioned mechanism in many transgenic/transformed organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MJ, Jeffreys AJ, Surani MA, Barton S, Norris ML, Collick A (1994) Tandemly repeated transgenes of the human minisatellite-Ms32-(D1s8), with novel mouse-gamma satellite. Nucleic Acids Res 22(15):2976–2981

    Article  PubMed  CAS  Google Scholar 

  • Amarir-Bouhram J, Goin M, Petit MA (2011) Low efficiency of homology-facilitated illegitimate recombination during conjugation in Escherichia coli. PLoS One 6(12):e28876. doi:10.1371/journal.pone.0028876

    Article  PubMed  CAS  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100(17):10108–10113. doi:10.1073/pnas.1733208100

    Article  PubMed  CAS  Google Scholar 

  • Bishop JO, Smith P (1989) Mechanism of chromosomal integration of microinjected DNA. Mol Biol Med 6(4):283–298

    PubMed  CAS  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27(1 Pt 2):223–231

    Article  PubMed  CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3(12):1152–1157. doi:10.1093/embo-reports/kvf237

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Colman D, Travis AJ, Luhmann U, Shi W, Feil S, Imsand C, Nelson J, Grimm C, Rulicke T, Fundele R, Neidhardt J, Berger W (2008) Overexpression of RPGR leads to male infertility in mice due to defects in flagellar assembly. Biol Reprod 79(4):608–617. doi:10.1095/biolreprod.107.067454

    Article  PubMed  CAS  Google Scholar 

  • Chan CY, Kiechle M, Manivasakam P, Schiestl RH (2007) Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 35(15):5051–5059. doi:10.1093/nar/gkm442

    Article  PubMed  CAS  Google Scholar 

  • Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7(5):e1000112. doi:10.1371/journal.pbio.1000112

    Article  PubMed  Google Scholar 

  • Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451. doi:10.1146/annurev.genet.39.073003.113340

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci USA 99(4):2094–2099. doi:10.1073/pnas.042263399

    Article  PubMed  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12(7):1075–1079. doi:10.1101/gr.132102

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Sasaki H, Seki R, Sakaki Y (1993) Mechanism of chromosomal integration of transgenes in microinjected mouse eggs: sequence analysis of genome-transgene and transgene–transgene junctions at two loci. Gene 128(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, Kobayashi I (1997) A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179(17):5380–5390

    PubMed  CAS  Google Scholar 

  • Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2(6):e60. doi:10.1371/journal.ppat.0020060

    Article  PubMed  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25(3):674–681

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Wackernagel W (2003) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 48(4):1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Merrihew R, Marburger K, Pennington S, Roth D, Wilson J (1996) High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol 16:10–18

    PubMed  CAS  Google Scholar 

  • Murnane JP, Yezzi MJ, Young BR (1990) Recombination events during integration of transfected DNA into normal human cells. Nucleic Acids Res 18(9):2733–2738

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Kuroiwa A, Yamada S, Isotani A, Yamashita A, Tairaka A, Hayashi T, Takagi T, Ikawa M, Matsuda Y, Okabe M (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80(6):564–574

    Article  PubMed  CAS  Google Scholar 

  • Noguchi A, Takekawa N, Einarsdottir T, Koura M, Noguchi Y, Takano K, Yamamoto Y, Matsuda J, Suzuki O (2004) Chromosomal mapping and zygosity check of transgenes based on flanking genome sequences determined by genomic walking. Exp Anim Jpn Assoc Lab Anim Sci 53(2):103–111

    Article  CAS  Google Scholar 

  • Prudhomme M, Libante V, Claverys JP (2002) Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci USA 99(4):2100–2105. doi:10.1073/Pnas.032262999

    Article  PubMed  CAS  Google Scholar 

  • Rijkers T, Peetz A, Ruther U (1994) Insertional mutagenesis in transgenic mice. Transgenic Res 3(4):203–215

    Article  PubMed  CAS  Google Scholar 

  • Rohan R, King D, Frels W (1990) Direct sequencing of PCR-amplified junction fragments from tandemly repeated transgenes. Nucleic Acids Res 18:6089–6095

    Article  PubMed  CAS  Google Scholar 

  • Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M (1987) Retrovirus integration and chromatin structure: moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 61(2):336–343

    PubMed  CAS  Google Scholar 

  • Sakagami K, Tokinaga Y, Yoshikura H, Kobayashi I (1994) Homology-associated nonhomologous recombination in mammalian gene targeting. Proc Natl Acad Sci USA 91(18):8527–8531

    Article  PubMed  CAS  Google Scholar 

  • Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88(17):7585–7589

    Article  PubMed  CAS  Google Scholar 

  • Schiestl RH, Dominska M, Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol 13(5):2697–2705

    PubMed  CAS  Google Scholar 

  • Schroder G, Schuelein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108(35):14643–14648. doi:10.1073/pnas.1019074108

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr Opin Biotechnol 15(2):126–131. doi:10.1016/j.copbio.2004.02.007

    Article  PubMed  CAS  Google Scholar 

  • Thompson T, Fan H (1985) Mapping of DNase I-hypersensitive sites in the 5′ and 3′ long terminal repeats of integrated moloney murine leukemia virus proviral DNA. Mol Cell Biol 5(4):601–609

    PubMed  CAS  Google Scholar 

  • Vijaya S, Steffen DL, Robinson HL (1986) Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 60(2):683–692

    PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15(5):1186–1197. doi:10.1105/Tpc.011023

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J Cell Mol Biol 51(4):631–641. doi:10.1111/j.1365-313X.2007.03164.x

    Article  CAS  Google Scholar 

  • Wurtele H, Little K, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10:1791–1799

    Article  PubMed  CAS  Google Scholar 

  • Yan BW, Li DF, Gou KM (2010) Homologous illegitimate random integration of foreign DNA into the X chromosome of a transgenic mouse line. BMC Mol Biol 11:58. doi:10.1186/1471-2199-11-58

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Andrew Bassett at University of Oxford for his valuable comments and suggestions on manuscript. The plant DNA was a gift from Professor Tao Wang and Dr. Jiang-li Dong in our college. The work was supported by National Major Special Project on New Varieties Cultivation for Transgenic Organisms in China (grant numbers 2008ZX08008-003, 2009ZX08006-011B) and Chinese Universities Scientific Fund (grant number 2011JS106).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Mian Gou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, BW., Zhao, YF., Cao, WG. et al. Mechanism of random integration of foreign DNA in transgenic mice. Transgenic Res 22, 983–992 (2013). https://doi.org/10.1007/s11248-013-9701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9701-z

Keywords

Navigation