Skip to main content

Genome Editing in Mouse Embryos with CRISPR/Cas9

  • Protocol
  • First Online:
Mouse Models of Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1960))

Abstract

Transgenic mouse models can be subdivided into two main categories based on genomic location: (1) targeted genomic manipulation and (2) random integration into the genome. Despite the potential confounding insertional mutagenesis and host locus-dependent expression, random integration transgenics allowed for rapid in vivo assessment of gene/protein function. Since precise genomic manipulation required the time-consuming prerequisite of first generating genetically modified embryonic stem cells, the rapid nature of generating random integration transgenes remained a strong benefit outweighing various disadvantages. The advent of targetable nucleases, such as CRISPR/Cas9, has eliminated the prerequisite of first generating genetically modified embryonic stem cells for some types of targeted genomic mutations. This chapter outlines the generation of mouse models with targeted genomic manipulation using the CRISPR/Cas9 system directly into single cell mouse embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77(12):7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palmiter RD, Brinster RL, Hammer RE et al (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300(5893):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan B, Li D, Gou K (2010) Homologous illegitimate random integration of foreign DNA into the X chromosome of a transgenic mouse line. BMC Mol Biol 11:58. https://doi.org/10.1186/1471-2199-11-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dai J, Cui X, Zhu Z et al (2010) Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6(7):756–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan BW, Zhao YF, Cao WG et al (2013) Mechanism of random integration of foreign DNA in transgenic mice. Transgenic Res 22(5):983–992. https://doi.org/10.1007/s11248-013-9701-z

    Article  CAS  PubMed  Google Scholar 

  6. Doetschman T, Gregg RG, Maeda N et al (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578. https://doi.org/10.1038/330576a0

    Article  CAS  PubMed  Google Scholar 

  7. Carbery ID, Ji D, Harrington A et al (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459. https://doi.org/10.1534/genetics.110.117002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Wang H, Shivalila CS et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. https://doi.org/10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sung YH, Kim JM, Kim HT et al (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24(1):125–131. https://doi.org/10.1101/gr.163394.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujii W, Kawasaki K, Sugiura K et al (2013) Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 41(20):e187. https://doi.org/10.1093/nar/gkt772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill JT, Demarest BL, Bisgrove BW et al (2014) Poly peak parser: method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Dev Dyn 243(12):1632–1636. https://doi.org/10.1002/dvdy.24183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dmitriev DA, Rakitov RA (2008) Decoding of superimposed traces produced by direct sequencing of heterozygous indels. PLoS Comput Biol 4(7):e1000113. https://doi.org/10.1371/journal.pcbi.1000113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18(1):92. https://doi.org/10.1186/s13059-017-1220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshimi K, Kunihiro Y, Kaneko T et al (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431. https://doi.org/10.1038/ncomms10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo C, Zuniga J, Edison E et al (2011) Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci 50(4):471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Spearow JL, Barkley M (1999) Genetic control of hormone-induced ovulation rate in mice. Biol Reprod 61(4):851–856

    Article  CAS  PubMed  Google Scholar 

  17. Hasegawa A, Mochida K, Inoue H et al (2016) High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol Reprod 94(1):21. https://doi.org/10.1095/biolreprod.115.134023

    Article  CAS  PubMed  Google Scholar 

  18. Morbeck DE, Leonard PH (2012) Culture systems: mineral oil overlay. Methods Mol Biol 912:325–331. https://doi.org/10.1007/978-1-61779-971-6_18

    Article  CAS  PubMed  Google Scholar 

  19. Bin Ali R, van der Ahe F, Braumuller TM et al (2014) Improved pregnancy and birth rates with routine application of nonsurgical embryo transfer. Transgenic Res 23(4):691–695. https://doi.org/10.1007/s11248-014-9802-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artiom Gruzdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scott, G.J., Gruzdev, A. (2019). Genome Editing in Mouse Embryos with CRISPR/Cas9. In: Allen, I. (eds) Mouse Models of Innate Immunity. Methods in Molecular Biology, vol 1960. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9167-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9167-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9166-2

  • Online ISBN: 978-1-4939-9167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics