Skip to main content
Log in

Antibiotic activity of bacterial endobionts of basidiomycete fruit bodies

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Bacterial strains (93 isolates) capable of growth on full-strength nutrient media were isolated from 86 fungal fruit bodies collected in the Moscow region. Antimicrobial activity of the endobiont isolates against 12 bacterial and fungal test strains (including drug-resistant ones) was studied in submerged cultures. Most of the strains (84.9%) were found to produce antibiotic compounds with different antimicrobial properties, including antifungal activity in 18.3% of the strains. Morphological characteristics and analysis of the 16S rRNA gene sequences were used to determine the taxonomic position of 16 bacterial strains of the following 10 species: Bacillus subtilis, Ewingella americana, Pseudomonas sp., Stenotrophomonas maltophilia, as well as Achromobacter spanius, B. licheniformis, Hafnia paralvei, Micrococcus terreus, Nocardia coeliaca, and St. rhizophila, which have not been previously known to be endobionts of basidiomycete fruit bodies. Antimicrobial activity of A. spanius, E. americana, H. paralvei, M. terreus, N. coeliaca, and St. rhizophila has not been reported previously. Complex mechanisms of symbiotic relations between fungi and bacteria, including those associated with antibiotic formation, probably developed in the course of co-evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, S.L., Moler, S., Green, N., Tran, R.K., Wainwright, K., and Janda, J.M., Clinical and laboratory diagnostic characteristics and cytotoxigenic potential of Hafnia alvei and Hafnia paralvei strains, J. Clin. Microbiol., 2011, vol. 49, no. 9, pp. 3122–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnolucci, M., Battini, F., Cristani, C., and Giovannetti, M., Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates, Biol. Fertil. Soils., 2015, vol. 51, no. 3, pp. 379–389.

    Article  CAS  Google Scholar 

  • Bérdy, J., Bioactive microbial metabolites, J. Antibiot., 2005, vol. 58, pp. 1–26.

    Article  PubMed  Google Scholar 

  • Biskupiak, J.E., Meyers, E., Gillum, A.M., Dean, L., Trejo, W.H., and Kirsch, D.R., Neoberninamycin, a new antibiotic produced by Micrococcus luteus, J. Antibiot., 1988, vol. 41, no. 5, pp. 684–687.

    CAS  PubMed  Google Scholar 

  • Chin, Y.-W., Balunas, M.J., Chai, H.B., and Kinghorn, A.D., Drug discovery from natural sources, AAPS J., 2006, vol. 8, no. 2, pp. 239–253.

    Article  Google Scholar 

  • Dahm, H., Wrótniak, W., Strzelczyk, E., Li, C.-Y., and Bednarska, E., Diversity of culturable bacteria associated with fruiting bodies of ectomycorrhizal fungi, Phytopathol. Pol., 2005, vol. 38, pp. 51–62.

    Google Scholar 

  • de Carvalho, M.P., Türck, P., and Abraham, W.-R., Secondary metabolites control the associated bacterial communities of saprophytic basidiomycotina fungi, Microbes Environ., 2015, vol. 30, pp. 196–198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmart, E.W., A new tuberculostatic antibiotic from a species of Nocardia, Am. Rev. Tuberc. Pulm. Dis., 1947, vol. 56, pp. 316–318.

    CAS  Google Scholar 

  • Fickers, P., Antibiotic compounds from Bacillus: why are they so amazing?, Am. J. Biochem. Biotechnol., 2012, vol. 8, no. 1, pp. 40–46.

    Article  Google Scholar 

  • Gordon, R.E., Barnett, D.A., Handerhan, J.E., and Pang, C.H.-N., Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain, Int. J. Syst. Bacteriol., 1974, vol. 24, no. 1, pp. 54–63.

    Article  Google Scholar 

  • Inglis, P.W., Burden, J.L., and Peberdy, J.F., Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus, Microbiology (UK), 1996, vol. 142, pp. 3253–3260.

    Article  CAS  Google Scholar 

  • Jakobi, M.I., Winkelmann, G., Kaiser, D., Kempler, C., Jung, G., Berg, G., and Bahl, H., Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089, J. Antibiot. (Tokyo), 1996, vol. 49, no. 11, pp. 1101–1104.

    Article  CAS  Google Scholar 

  • Kobayashi, D.Y. and Crouch, J.A., Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts, Annu. Rev. Phytopathol., 2009, vol. 47, pp. 63–82.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, D., Reddy, M.S., and Upadhyay, R.C., Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp., Ann. Microbiol., 2012, vol. 63, pp. 845–853.

    Article  Google Scholar 

  • Leveau, J.H. and Preston, G.M., Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction, New Phytol., 2007, vol. 177, pp. 859–876.

    Article  PubMed  Google Scholar 

  • Loeb L.J., Moyer A., Murray R.J.E., An antibiotic produced by Micrococcus epidermidis, Can. J. Res., 1950, vol. 28, no. 5, pp. 212–216.

    Article  CAS  Google Scholar 

  • Malanicheva, I.A., Kozlov, D.G., Efimenko, T.A., Zenkova, V.A., Katrukha, G.S., Reznikova, M.I., Korolev, A.M., Borshchevskaya, L.N., Tarasova, O.D., Sineokii, S.P., and Efremenkova, O.V., New Antibiotics Produced by Bacillus subtilis Strains, Microbiology (Moscow), 2014, vol. 83, no. 4, pp. 352–356.

    Article  CAS  Google Scholar 

  • PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., New York: Academic, 1990.

  • Raaijmakers, J.M., De Bruijn, I., Nybroe, O., and Ongena, M., Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics, FEMS Microbiol. Rev., 2010, vol. 34, no. 6, pp. 1037–1062.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, J.E., Venturini, M.E., Oria, R., and Blanco, D., Prevalence of Ewingella americana in retail fresh cultivated mushrooms (Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus) in Zaragoza (Spain), FEMS Microbiol. Ecol., 2004, vol. 47.? 3. P. 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Smirnov, V.V. and Kiprianova, E.A., Bakterii roda Pseudomonas (Bacteria of the Genus Pseudomonas), Aizenman, B.E., Ed., Kiev: Naukova Dumka, 1990.

  • Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., and Wichers, H.J., Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus, FEMS Microbiol. Rev., 1999, vol. 23, pp. 591–614.

    Article  CAS  PubMed  Google Scholar 

  • Warmink, J.A., Nazir, R., and van Elsas, J.D., Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi, Environ. Microbiol., 2009, vol. 11, pp. 300–312.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, A., Fritze, A., Hagemann, M., and Berg, G., Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1937–1944.

    CAS  PubMed  Google Scholar 

  • Zagryadskaya, Yu.A., Lysak, L.V., Sidorova, I.I., Aleksandrova, A.V., and Voronina, E.Yu., Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes, Biol. Bull., 2013, no. 4, pp. 358–364.

    Article  Google Scholar 

  • Zagryadskaya, Yu.A., Lysak, L.V., Sidorova, I.I., and Aleksandrova, A.V., Bacterial communities of the loci formed by basidiomycetes in a forest biocenosis, Sovremennaya mikologiya v Rossii (Modern Mycology in Russia), Proc. 3rd Internatl. Mycol. Forum, D’yakov, Yu.T. and Sergeev, Yu.V., Eds., Moscow: Natl. Acad. Mycol., 2015, Ser. 6, vol. 5, pp. 407–409.

    Google Scholar 

  • Zagryadskaya, Yu.A., Lysak, L.V., Voronina, E.Yu., Aleksandrova, A.V., and Sidorova, I.I., Characterization of bacterial communities of basidiomycete fruit bodies and hyphosphere, Sovremennaya mikologiya v Rossii (Modern Mycology in Russia), Proc. 3rd Congr. Mycol. Russia, Moscow: Natl. Acad. Mycol., 2012, vol. 3, p. 180.

    Google Scholar 

  • Zhang, J.-Y., Liu, X.-Y., and Liu, S.-J., Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 1897–1903.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Efimenko.

Additional information

Original Russian Text © T.A. Efimenko, I.A. Malanicheva, B.F. Vasil’eva, A.A. Glukhova, I.G. Sumarukova, Yu.V. Boikova, N.D. Malkina, L.P. Terekhova, O.V. Efremenkova, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 6, pp. 740–747.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimenko, T.A., Malanicheva, I.A., Vasil’eva, B.F. et al. Antibiotic activity of bacterial endobionts of basidiomycete fruit bodies. Microbiology 85, 752–758 (2016). https://doi.org/10.1134/S0026261716060084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716060084

Keywords

Navigation