Skip to main content
Log in

Antimicrobial potential of endophytic fungi from Astragalus chinensis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The purpose of the present study was to discover antimicrobial endophytic fungi from Astragalus chinensis. Three fungal endophytes with antibacterial activity were isolated and determined as Chaetomium sp. HQ-1, Fusarium sp. HQ-7 and Fusarium sp. HQ-9 based on the neighbor-joining phylogenetic tree. Chaetomium sp. HQ-1 showed the best antibiotic potential and was thus selected for large-scale fermentation. Bioactivity-directed separation of ME fermentation of strain HQ-1 led to the discovery of three compounds, which were identified as differanisole A (1), 2,6-dichloro-4-propylphenol (2) and 4,5-dimethylresorcinol (3), from the HR–ESI–MS and NMR data analysis. All three compounds exhibited moderate antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and methicillin-resistant S. aureus, with MIC values ranging from 16 to 128 μg/mL. Compounds 1 and 3 also displayed promising antifungal activity against Selerotium rolfsii with IC50 values of less than 16 and 32 μg/mL, respectively, which were comparable to that of actidione (8 μg/mL). The findings of the present study suggest that the endophytic fungi from A. chinensis have the potential to be used as bactericides and fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asgari B, Zare R (2011) The genus Chaetomium in Iran, a phylogenetic study including six new species. Mycologia 103(4):863–882

    PubMed  Google Scholar 

  • Basak S, Singh P, Rajurkar M (2016) Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog. https://doi.org/10.1155/2016/4065603

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashyal BP, Wijeratne EMK, Tillotson J, Arnold AE, Chapman E, Gunatilaka AAL (2017) Chlorinated dehydrocurvularins and alterperylenepoxide A from Alternaria sp. AST0039, a fungal endophyte of Astragalus lentiginosus. J Nat Prod 80:427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48:1–12

    PubMed  Google Scholar 

  • Christie RM, Rickards RW, Schmalzl KJ, Taylor D (1977) Ring contraction of 4-substituted 2, 6-dichlorophenols. The crystal structure of 2, 2, 4α, 5α-tetrachloro-1α, 3α-dihydroxycyclopentane-1, 4-carbolactone. Aust J Chem 30(10):2195–2204

    CAS  Google Scholar 

  • Egamberdieva E, Wirth S, Behrendt U, Ahmad P, Berg G (2017) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199

    PubMed  PubMed Central  Google Scholar 

  • Fan YP, Hu YL, Wang DY, Liu JG, Zhang J, Zhao XJ, Liu X, Liu C, Yuan J, Ruan S (2012) Effects of Astragalus polysaccharide liposome on lymphocyte proliferation in vitro and adjuvanticity in vivo. Carbohydr Polym 88:68–74

    CAS  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Anton Leeuw 108:267–289

    Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    PubMed  PubMed Central  Google Scholar 

  • Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    CAS  PubMed  Google Scholar 

  • Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75:1292–1302

    PubMed  Google Scholar 

  • Ibrahim LF, Marzouk MM, Hussein SR, Kawashty SA, Mahmoud K, Saleh NAM (2013) Flavonoid constituents and biological screening of Astragalus bombycinus. Nat Prod Res 27:386–393

    CAS  PubMed  Google Scholar 

  • Jiang JB, Wu CH, Gao H, Song JD, Li HQ (2010) Effects of astragalus polysaccharides on immunologic function of erythrocyte in chickens infected with infectious bursa disease virus. Vaccine 28:5614–5616

    CAS  PubMed  Google Scholar 

  • Jogi A, Kerry JW, Brenneman TB, Leebens-Mack JH, Gold SE (2016) Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels. Microbiol Res 184:1–12

    CAS  PubMed  Google Scholar 

  • Kanatani Y, Makishima M, Ken-i Asahi, Sakurai A, Takahashi N, Motoyoshi K, Nagata N (1997) Differanisole A, a novel antitumor antibiotic, enhances growth inhibition and differentiation of human myeloid leukemia cells induced by 9-cis retinoic acid. BBA Mol Cell Res 1359:71–79

    Google Scholar 

  • Kubohara Y, Okamoto K, Tanaka Y, Ken-i Asahi, Sakurai A, Takahashi N (1993) Differanisole A, an inducer of the differentiation of Friend leukemic cells, induces stalk cell differentiation in Dictyostelium discoideum. FEBS Lett 322(1):73–75

    CAS  PubMed  Google Scholar 

  • Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485:439–440

    CAS  PubMed  Google Scholar 

  • Li R, Chen WC, Wang WP, Tian WY, Zhang XG (2010) Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydr Polym 82(2):240–244

    CAS  Google Scholar 

  • Li X, Qu L, Dong Y, Han L, Liu E, Fang S, Zhang Y, Wang T (2014) A review of recent research progress on the Astragalus genus. Molecules 19(11):18850–18880

    PubMed  PubMed Central  Google Scholar 

  • Li H, Tian JM, Tang HY, Pan SY, Zhang AL, Gao JM (2015) Chaetosemins A–E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Adv 5:29185–29192

    CAS  Google Scholar 

  • Liu X, Li H, Zhou F, Wang R (2015) Secondary metabolites of Fusarium sp., an endophytic fungus in Astragalus membranaceus. Chem Nat Compd 51(6):1199–1201

    CAS  Google Scholar 

  • Liu P, Zhao H, Luo Y (2017) Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis 8(6):868–886

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Chen L, Zhao J, Cui K (2018) Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro. Int J Biol Macromol 111:947–952

    CAS  PubMed  Google Scholar 

  • Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17

    CAS  PubMed  Google Scholar 

  • Mazinani Z, Zamani M, Sardari S (2017) Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicen J Med Biotechnol 9(1):31–37

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    CAS  PubMed  Google Scholar 

  • Ogata N, Shibata T (2004) Inhibition of rat intestinal Cl secretion by 4,5-dimethylresorcinol. Pharmacology 72(4):247–253

    CAS  PubMed  Google Scholar 

  • Oka H, Asahi KI, Morishima H, Sanada M, Shiratori K, Iimura Y, Sakurai T, Uzawa J, Iwadare S, Takahashi N (1985) Differanisole A, a new differentiation inducing substance. J Antibiot 38(8):1100–1102

    CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    PubMed  PubMed Central  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6(210):1–14

    Google Scholar 

  • Spellberg B (2012) New antibiotic development: barriers and opportunities in 2012. APUA Clin Newsl 30:8–10

    Google Scholar 

  • Strobel GA (2003) Endophytic as sources of bioactive products. Microbes Infect 5:535–544

    CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  • Tian Y, Jiang N, Zhang AH, Chen CJ, Deng XZ, Zhang WJ, Tan RX (2015) Muta-mycosynthesis of naphthalene analogs. Org Lett 17:1457–1460

    CAS  PubMed  Google Scholar 

  • Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M (2012) Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 63:975–985

    CAS  PubMed  Google Scholar 

  • Vuong C, Yeh AJ, Cheung GYC, Otto M (2016) Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drug 25(1):73–93

    CAS  Google Scholar 

  • Willyard C (2017) The drug-resistant bacteria that pose the greatest health threats. Nat New. https://doi.org/10.1038/nature.2017.21550

    Article  Google Scholar 

  • Wu CY, Ke Y, Zeng YF, Zhang YW, Yu HJ (2017) Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell Int 17:115

    PubMed  PubMed Central  Google Scholar 

  • Xu GB, Li LM, Yang T, Zhang GL, Li GY (2012) Chaetoconvosins A and B, alkaloids with new skeleton from fungus Chaetomium convolutum. Org Lett 14:6052–6055

    CAS  PubMed  Google Scholar 

  • Xu YM, Artiles PE, Liu MX, Arnold AE, Gunatilaka AAL (2013) Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A–E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus. J Nat Prod 76:2330–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, Li SJ, Chen CJ, Jiao RH, Xu Q, Ng SW, Tan RX (2014) Pictet-Spengler reaction-based biosynthetic machinery in fungi. Proc Natl Acad Sci 111:18138–18143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MH, Gu ML, Han C, Guo XJ, Yin GP, Yu P, Kong LY (2018) Aureochaeglobosins A-C, three [4 + 2] adducts of chaetoglobosin and aureonitol dserivatives from Chaetomium globosum. Org Lett 20(11):3345–3348

    CAS  PubMed  Google Scholar 

  • Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD (2013) Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J Agric Food Chem 61:1521–1524

    CAS  PubMed  Google Scholar 

  • Zhao SS, Zhang YY, Yan Y, Cao LL, Xiao Y, Ye YH (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett 364(3):1–6

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21602152), Shandong Provincial Natural Science Foundation (ZR2016BB01), Shandong Provincial Key Laboratory of Agricultural Microbiology Open Fund (SDKL2017015).

Author information

Authors and Affiliations

Authors

Contributions

PL, DZ and RS performed the experiments and analyzed data. ZY and FZ edited the manuscript. YT designed the experiments. All authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhengyou Yang, Fengchun Zhao or Yuan Tian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhang, D., Shi, R. et al. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 9, 405 (2019). https://doi.org/10.1007/s13205-019-1948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1948-5

Keywords

Navigation