Skip to main content

Advertisement

Log in

Entomogenous fungi isolated from Cryptotympana atrata with antibacterial and antifungal activity

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Although many entomogenous fungi have been discovered over the years, few studies on the crude extracts of fungi isolated from Cryptotympana atrata with antibacterial and antifungal activity were reported. In this study, total twenty entomogenous fungi were isolated for the first time. And among of them, two pure cultures were identified as Purpureocillium lilacinum and Aspergillus fumigatus with apparent morphology, microscopic identification and 18S rRNA gene sequence. The active strains were fermented to optimize in six different culture media at three different pH values. The antibacterial and antifungal activities of the metabolites were more potent and efficient in Fungal medium 3# at a pH of 6.2 than in the other tested media or at the other tested pH values. Total seven human pathogens and one insect pathogen were used to evaluate the antibacterial and antifungal activity of crude extracts, among which 25% of the extracts exhibited antifungal activity against Verticillium lecanii, while 33.3% and 47.2% of the extracts exhibited antibacterial activity against the important human pathogens Staphylococcus aureus and Bacillus cereus, respectively. The range of the MICs was from 15.6 to 250 μg mL−1, and 35% of the fungal metabolites exhibited antibacterial activity against Pseudomonas aeruginosa, Bacillus thuringiensis and Enterobacter aerogenes at 1000 μg mL−1 except the previously described antibacterial activities. Furthermore, the phylogenetic relationships of the two identified fungi were also constructed. In brief, it is the first reporting about enthompathogenic fungi from Cryptotympana atrata and provides candidate strains with potential use as biological agents and against multidrug-resistant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abad A, Molina J, Bikandi J, Ramrez A, Margareto J, Sendino J, Hernando F et al (2010) What makes Aspergillus fumigatus a successful pathogen? Genesand molecules involved in invasive aspergillosis. Rev Iberoam Micol 27(4):155–182

    PubMed  Google Scholar 

  • Ahmad M, Khan AU (2019) Global economic impact of antibiotic resistance: a review. J Glob Antimicrob Resist 19:313–316

    PubMed  Google Scholar 

  • Alexandra MC, Jon C (2015) Animals in a bacterial world: opportunities for chemical ecology. Nat Prod Rep 32:888

  • Arnam EB, Currie CR, Clardy J (2018) Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 47:1638–1651

    PubMed  Google Scholar 

  • Benhamou N, Brodeur J (2000) Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology 90:932–943

    CAS  PubMed  Google Scholar 

  • Briard B, Muszkieta L, Latgé JP, Fontaine T (2016) Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer. Mycologia 108(3):572–580

    CAS  PubMed  Google Scholar 

  • Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354

    CAS  PubMed  Google Scholar 

  • Campbell MA, Lukasik P, Meyer MC, Buckner M, Simon C, Veloso C et al (2018) Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. Mbio 9:e02104–e2118

    PubMed  PubMed Central  Google Scholar 

  • Chao C, Chen Y, Cheng C, Li Y (2013) Catalytic function of a newly purified exo-β-D-glucosaminidase from the entomopathogenic fungus Paecilomyces lilacinus. Carbohyd Polym 93:615–621

    CAS  Google Scholar 

  • Chen S, Zhang Y, Niu S, Liu X, Che Y (2014) Cytotoxic cleistanthane and cassane diterpenoids from the entomogenous fungus Paraconiothyriumhawaiiense. J Nat Prod 77:1513–1518

    CAS  PubMed  Google Scholar 

  • Chen S, Zhang Z, Li L, Liu X, Ren F (2015) Two new ramulosin derivatives from the entomogenous fungus truncatella angustata. Nat Prod Commun 10:341–344

    CAS  PubMed  Google Scholar 

  • Cutcheon JP, McDonald BR, Moran NA (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. PNAS 106:15394–15399

    Google Scholar 

  • Fang W, Latg J (2017) Microbe profile: aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen. Microbiology 164:1009–1011

    Google Scholar 

  • Florez LV, Biedermann PH, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936

    CAS  PubMed  Google Scholar 

  • Guo H, Kreuzenbeck NB, Otani S, Garcia-Altares M, Dahse HM, Weigel C et al (2016) Pseudoxylallemycins A-F, cyclic tetrapeptides with rare allenyl modifications isolated from pseudoxylaria sp. X802: a competitor of fungus-growing termite cultivars. Org Lett 18:3338–3341

    CAS  PubMed  Google Scholar 

  • Guruceaga X, Perez-Cuesta U, Cerio A, Gonzalez O, Alonso R, Hernando F et al (2019) Fumagillin, a mycotoxin of Aspergillus fumigatus: biosynthesis, biological activities, detection, and applications. Toxins 12:1–26

    Google Scholar 

  • Haaber J, Cohn MT, Petersen A, Ingmer H (2016) Simple method for correct enumeration of Staphylococcus aureus. J Microbiol Methods 125:58–63

    CAS  PubMed  Google Scholar 

  • He C, Lin H, Wang C, Zhang M, Lin Y, Huang F, Lin Y et al (2019) Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF-κB/MAPK pathway. Mol Med Reo 20:4943–4952

    CAS  Google Scholar 

  • Helaly SE, Kuephadungphan W, Phongpaichit S, Luangsa-ard JJ, Rukachaisirikul V, Stadler M (2017) Five unprecedented secondary metabolites from the spider parasitic fungus Akanthomyces novoguineensis. Molecules 22:991

    PubMed Central  Google Scholar 

  • Huang Y, Kang J, Liu R, Oh K, Nam C, Kim H (1997) Cytotoxic activities of various fractions extracted from some pharmaceutial insect relatives. Arch Pharm Res 20:110–114

    CAS  PubMed  Google Scholar 

  • Jackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55:129–145

    Google Scholar 

  • Kim M, Kim H, Ryu J, Jo S, Lee G, Ryu MH et al (2014) Anti-inflammatory effects of Cryptotympana atrata Fabricius slough shed on contact dermatitis induced by dinitrofluorobenzene in mice. Pharmacogn Mag 10:S377–S382

    PubMed  PubMed Central  Google Scholar 

  • Kim TK, Yong HI, Kim YB, Kim HW, Choi YS (2019) Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci Anim Resour 39:521–540

    PubMed  PubMed Central  Google Scholar 

  • Leuven JT, Meister RC, Simon C, Cutcheon JP (2014) Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–1280

    PubMed  Google Scholar 

  • Ma XL, Wang WS, Li E, Gao FH, Guo LD, Pei YF (2015) A new sesquiterpene from the entomogenous fungus Phomopsis amygdali. Nat Prod Res 30:1–5

    CAS  Google Scholar 

  • Mackel JJ, Garth JM, Blackburn JP, Jones MJ, Steele C (2020) 12/15-lipoxygenase deficiency impairs neutrophil granulopoiesis and lung proinflammatory responses to Aspergillus fumigatus. J IMMUNOL 3:1–11

    Google Scholar 

  • Marshall DC, Moulds M, Hill KB, Price BW, Wade EJ, Owen CL et al (2018) A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. ZOOTAXA 4424:001–064

    Google Scholar 

  • Marti GA, Lastra CC, Pelizza SA, Garcıa JJ (2006) Isolation of Paecilomyces lilacinus (Thom) samson (Ascomycota:Hypocreales) from the Chagas disease vector, Triatoma infestans Klug (Hemiptera: Reduviidae) in an endemic area in Argentina. Mycopathologia 162:369–372

    PubMed  Google Scholar 

  • Martín JF, Berg MA, Themaat EV, Liras P (2019) Sensing and transduction of nutritional and chemical signals in filamentous fungi: impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 37:107392

    PubMed  Google Scholar 

  • Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY et al (2018) Recurrent symbiont recruitment from fungal parasites in cicadas. PNAS 115:E5970–E5979

    CAS  PubMed  Google Scholar 

  • McConnell MJ (2019) Where are we with monoclonal antibodies for multidrug-resistant infections. Drug Discov Today 24:1132–1138

    CAS  PubMed  Google Scholar 

  • Mei Y, Zhu Y, Huang P, Yang Q, Dai C (2019) Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biot 103:6041–6059

    CAS  Google Scholar 

  • Meyer V, Wu B, Ram A (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33:469–476

    CAS  PubMed  Google Scholar 

  • Monno R, Alessio G, Guerriero S, Capolongo C, Calia C et al (2016) Paecilomyces lilacinus Keratitis in a Soft Contact Lens Wearer. Eye Contact Lens 44:1–4

    Google Scholar 

  • Moonjely S, Barelli L, Bidochka MJ (2015) Insect pathogenic fungi as endophytes. Adv Genet 94(107):135

    Google Scholar 

  • Mroczynska M, Kurzyk E, Sliwka-Kaszynska M, Nawrot U, Adamik M, Browska AB (2020) The effect of posaconazole, itraconazole and voriconazole in the culture medium on Aspergillus fumigatus triazole resistance. Microorganisms 8:285

    CAS  PubMed Central  Google Scholar 

  • Rao Q, Shang WL, Hu XM, Rao XC (2015) Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. J Med Microbiol 64:1462–1473

    CAS  PubMed  Google Scholar 

  • Romo AL, Quiros R (2019) Appropriate use of antibiotics: an unmet need. Ther Adv Urol 11:9–17

    Google Scholar 

  • Sato S, Chuman Y, Matsushima A, Tominaga YS, Shimohigashi M (2002) A circadian neuropeptide, pigment-dispersing factor-pdf, in the last-summer cicada meimuna opalifera: cDNA coling and immunocytochemistry. Zoolog Sci 19:821–828

    CAS  PubMed  Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLOS Pathog 10:e1003859

    PubMed  PubMed Central  Google Scholar 

  • Schrögel P, Wätjen W (2019) Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 8:288

    PubMed Central  Google Scholar 

  • Sharma C, Chowdhary A (2017) Molecular bases of antifungal resistance in filamentous fungi. Int J Antimicrob Ag 50(5):607–616

    CAS  Google Scholar 

  • Shi YJ, Xu XQ, Zhu Y (2009) Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Appl Microbiol Biotechnol 82:921–927

    CAS  PubMed  Google Scholar 

  • Shin TY, Park JH, Kim HM (1999) Effect of Cryptotympana atrata extract on compound 48/80-induced anaphylactic reactions. J Ethnopharmacol 66:319–325

    CAS  PubMed  Google Scholar 

  • Tian J, Han JJ, Zhang X, He LW, Zhang YJ, Bao L, Liu HW (2016) New cyclohexadepsipeptides from an entomogenous fungus Fusarium proliferatum and their cytotoxicity and autophagy-inducing activity. Chem Biodiversity 13:1–9

    Google Scholar 

  • Veerdonk F, Gresnigt M, Romani L, Netea M, Latgé J (2017) Aspergillus fumigatus morphology and dynamic host interactions. Microbiology 15:661–674

    PubMed  Google Scholar 

  • Wang S, Chen H, Tang X, Zhang H, Chen W, Chen Y (2017) Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 101(22):8063–8075

    CAS  PubMed  Google Scholar 

  • Willger S, Grahl N, Cramer R (2009) Aspergillus fumigatus metabolism: Clues to mechanisms of in vivo fungal growth and virulence. Med Mycol 47:S72–S79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong G, Nash R, Barai K, Rathod R, Singh A (2012) Paecilomyces lilacinus causing debilitating sinusitis in an immunocompetent patient: a case report. J Med Case Rep 6:86

    PubMed  PubMed Central  Google Scholar 

  • Wosten H (2019) Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotech 59:65–70

    PubMed  Google Scholar 

  • Wu SJ, Pan SK, Wang HB, Wu JH (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. Int J Biol Macromol 62:348–351

    CAS  PubMed  Google Scholar 

  • Xu XQ, Yu YF, Shi YJ (2011) Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation. Biotechnol Lett 33:763–768

    CAS  PubMed  Google Scholar 

  • Xu X, Xia L, Chen W, Huang Q (2017) Detoxification of hexavalent chromate by growing Paecilomyces lilacinus XLA. Environ Pollut 225:47–54

    CAS  PubMed  Google Scholar 

  • Yang Z, Huang N, Xu B, Huang W, Xie T, Cheng F, Zou K (2016) Cytotoxic 1,3-Thiazole and 1, 2, 4-Thiadiazole alkaloids from Penicillium oxalicum: structural elucidation and total synthesis. Molecules 21:232

    PubMed  PubMed Central  Google Scholar 

  • Yu G, Liu JL, Xie LQ, Wang XL, Zhang SH, Pan HY (2012) Characterization, cloning, and heterologous expression of a subtilisin-like serine protease gene VlPr1 from Verticillium lecanii. J Microbiol 50:939–946

    CAS  PubMed  Google Scholar 

  • Yu G, Xie LQ, Li JT, Sun XH, Zhang H, Du Q et al (2015) Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii. Genet Mol Res 14:2275–2289

    CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang J, Wei L, Shi M, Wang J, Huang J (2017) Gunnilactams A–C, macrocyclic tetralactams from the mycelial culture of the entomogenous fungus Paecilomycesgunnii. J Nat Prod 80:1935–1938

    CAS  PubMed  Google Scholar 

  • Zhou XL, Xiao CJ, Wu LB, Huang B, Dong X, Jiang B (2014) Five new terpenoids from the rhizomes of Isodon adenantha. J Asian Nat Prod Res 16:555–564

    CAS  PubMed  Google Scholar 

  • Zhou KX, Li C, Chen DM, Pan YH, Tao YF, Qu W et al (2018) A review on nanosystems as an effective approach against infections of Staphylococcus aureus. INT J NANOMED 13:7333–7347

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance from the Student Scientific Research Project of Jining Medical University (grant number JYXS2017KJ023, 2017) and the Youth Support Fund of Jining Medical University (grant number JYFC2018KJ028, 2018) of Shandong, China. The authors thank all individuals involved in this study for their technical assistance and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Authors X. Q. Cui  and H. Y. Wang conceived and designed the experiments. Material preparation, experiment operation, data collection and analysis were performed by H. Yang, X. Li and X. Zh. Li. The first draft of the manuscript was written by X. Q. Cui and all authors commented on original versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoqiu Cui.

Ethics declarations

Conflict of interest

All authors declare no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, H., Yang, H. et al. Entomogenous fungi isolated from Cryptotympana atrata with antibacterial and antifungal activity. Antonie van Leeuwenhoek 113, 1507–1521 (2020). https://doi.org/10.1007/s10482-020-01459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01459-6

Keywords

Navigation