Skip to main content

Advertisement

Log in

Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata—LGMF626, Xylaria sp.—LGMF673, and Bjerkandera sp.—LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata—LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Alfred Publishing Corporation, Carol Stream

    Google Scholar 

  2. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845. doi:10.1007/s00253-011-3270-y

    Article  PubMed  CAS  Google Scholar 

  3. Arivudainambi E, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61:340–345. doi:10.1111/j.1574-695X.2011.00780.x

    Article  PubMed  CAS  Google Scholar 

  4. Azevedo JL (1998) Microrganismos endofíticos. In: Melo IS, Azevedo JL (eds) Ecologia microbiana. Embrapa, São Paulo, pp 117–137

    Google Scholar 

  5. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  6. Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2011) Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol 27:3005–3008. doi:10.1007/s11274-011-0765-8

    Article  CAS  Google Scholar 

  7. Chengliang F, Yangmin MA (2010) Isolation and anti-phytopathogenic activity of secondary metabolites from Alternaria sp. FL25, an endophytic fungus in Ficus carica. Chin J Appl Environ Biol 16(1):076–078. doi:10.3724/SP.J.1145.2010.00076

    Article  CAS  Google Scholar 

  8. Corrado M, Rodrigues KF (2004) Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. J Basic Microbiol 44:157–160. doi:10.1002/jobm.200310341

    Article  PubMed  Google Scholar 

  9. Cui J, Guo S, Xiao P (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. Biomed Biotechnol 12:385–392. doi:10.1631/jzus.B1000330

    CAS  Google Scholar 

  10. Degáspari CH, Waszczynskyj N, Prado MRM (2005) Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciênc agrotec 29:617–622. doi:10.1590/S1413-70542005000300016

    Article  Google Scholar 

  11. De Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189. doi:10.1111/j.1439-0507.1998.tb00321.x

    Article  PubMed  Google Scholar 

  12. Ding X, Liu K, Deng B, Chen W, Li W, Liu F (2013) Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J Microbiol Biotechnol 29:1831–1838. doi:10.1007/s11274-013-1345-x

    Article  PubMed  CAS  Google Scholar 

  13. El-Banna NM (2005) Effect of carbon source on the antimicrobial activity of the air flora. World J Microbiol Biotechnol 21:1451–1454. doi:10.1007/s11274-005-6564-3

    Article  CAS  Google Scholar 

  14. Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28:2069–2076. doi:10.1007/s11274-012-1009-2

    Article  PubMed  CAS  Google Scholar 

  15. Gloer JB, Poch GK, Short DM, McCloskey DV (1988) Structure of brassicicolin A: a novel isocyanide antibiotic from the phylloplane fungus Alternaria brassicicola. J Org Chem 53(16):3758–3761. doi:10.1021/jo00251a017

    Article  CAS  Google Scholar 

  16. Gu W (2009) Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana. World J Microbiol Biotechnol 25(9):1677–1683. doi:10.1007/s11274-009-0062-y

    Article  CAS  Google Scholar 

  17. He JW, Chen GD, Gao H, Yang F, Li XX, Peng T, Guo LD, Yao XS (2012) Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83:1087–1091. doi:10.1016/j.fitote.2012.05.002

    Article  PubMed  CAS  Google Scholar 

  18. Hellwig V, Grothe T, Mayer-Bartschmid A, Endermann R, Geschke FU, Henkel T, Stadler M (2002) Altersetin, a new antibiotic from cultures of endophytic Alternaria spp. taxonomy, fermentation, isolation, structure elucidation and biological activities. J Antibiot 55(10):881–892. doi:10.7164/antibiotics.55.881

    Article  PubMed  CAS  Google Scholar 

  19. Johann S, Rosa LH, Rosa CA, Perezc P, Cisalpinoa PS, Zanib CL, Cota BB (2012) Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis. Rev Iberoam Micol 29(4):205–209. doi:10.1016/j.riam.2012.02.002

    Article  PubMed  Google Scholar 

  20. Kim MY, Sohn JH, Ahn JS, Oh H (2009) Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016. J Nat Prod 72:2065–2068. doi:10.1021/np900464p

    Article  PubMed  CAS  Google Scholar 

  21. Kjer J, Wray V, Edrada-Ebel RA, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057. doi:10.1021/np900417g

    Article  PubMed  CAS  Google Scholar 

  22. Levy LM, Cabrera GM, Wright JE, Seldes AM (2000) Bioactive metabolites produced by fungi cultures. Molecules 5:354–355. doi:10.3390/50300354

    Article  CAS  Google Scholar 

  23. Lim C, Kim J, Choi JN, Ponnusamy K, Jeon Y, Kim SU, Kim JG, Lee C (2010) Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J Microbiol Biotechnol 20:494–500. doi:10.4014/jmb.0909.09026

    PubMed  CAS  Google Scholar 

  24. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annus. Plant Sci 151:67–73. doi:10.1016/S0168-9452(99)00199-5

    Article  CAS  Google Scholar 

  25. Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN, Pellizar VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23. doi:10.1007/s00792-013-0588-7

    Article  PubMed  CAS  Google Scholar 

  26. Mitra A, Pramanik A, Santra SC, Sen PK, Mukherjee J (2011) Phylogeny, phenotypic and nutritional characteristics of estuarine soil actinomycetes having broad-spectrum antimicrobial activity derived from an ecologically guided bioprospecting programme. World J Microbiol Biotechnol 27:1679–1688. doi:10.1007/s11274-010-0622-1

    Article  CAS  Google Scholar 

  27. Moellering RC (2012) MRSA: the first half century. J Antimicrob Chemother 67:4–11. doi:10.1093/jac/dkr437

    Article  PubMed  CAS  Google Scholar 

  28. Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D’Ambrosio M, di Toppi LS, Pertot I (2007) Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: an ultrastructural study. Micron 38(6):643–650. doi:10.1016/j.micron.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  29. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11. doi:10.1155/2014/250693

    Article  Google Scholar 

  30. NCCLS (2003a) Performance Standards for Antimicrobial Disk Susceptibility Tests; approved standard—8th edn. Clinical and Laboratory Standards Institute document M2-A8. Clinical and Laboratory Standards Institute, Wayne

  31. NCCLS (2003b) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; approved standard—8th edn. Clinical and Laboratory Standards Institute document M7-A6. Clinical and Laboratory Standards Institute, Wayne

  32. Okafor N (2007) Modern industrial microbiology and biotechnology. Science Publishers, Enfield

    Google Scholar 

  33. Okamura N, Haraguchi H, Hashimotot K, Yagi A (1993) Altersolanol-related antimicrobial compounds from a strain of Alternaria solani. Phytochemistry 34(4):1005–1009. doi:10.1016/S0031-9422(00)90703-9

    Article  CAS  Google Scholar 

  34. Okuno T, Natsume I, Sawai K, Sawamura K, Furusaki A, Matsumoto T (1983) Structure of antifungal and phytotoxic pigments produced by Alternaria sps. Tetrahedron Lett 24(50):5653–5656. doi:10.1016/S0040-4039(00)94165-0

    Article  CAS  Google Scholar 

  35. Pandey A, Naik MM, Dubey SK (2010) Organic metabolites produced by Vibrio parahaemolyticus strain An3 isolated from Goan mullet inhibit bacterial fish pathogens. Afr J Biotechnol 9(42):7134–7140. doi:10.5897/AJB10.1040

    CAS  Google Scholar 

  36. Pandey A, Naik MM, Dubey SK (2011) Biological characterization of marine fish pathogen, Acinetobacter sp. strain An 2 producing antibacterial metabolites. J Sci Ind Res 70(2):135–141

    CAS  Google Scholar 

  37. Ratnaweera PB, Williamsc D, de Silva ED, Wijesunderad RLC, Dalisayc DS, Andersen RJ (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5(1):23–28. doi:10.1080/21501203.2014.892905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sebastianes FLS, Cabedo N, El Aouad N, Valente AMMP, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA, Cortes D (2012) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 655:622–632. doi:10.1007/s00284-012-0206-4

    Article  CAS  Google Scholar 

  39. Shaaban M, Shaaban KA, Abdel-Aziz MS (2012) Seven naphtho-g-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties. Org Med Chem Lett 2:6. doi:10.1186/2191-2858-2-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sonaimuthu V, Parihar S, Thakur JP, Luqman S, Saikia D, Chanotiya CS, Jhonpaul M, Negi AS (2011) Tenuazonic acid: a promising antitubercular principal from Alternaria alternata. Microbiol Res 2(e17):63–65. doi:10.4081/mr.2011.e17

    Google Scholar 

  41. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PloS One 8:e72520. doi:10.1371/journal.pone.0072520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  43. Xu X, Zhao S, Wei J, Fang N, Yin L, Sun J, 6 (2012) Porric acid D from marine-derived fungus Alternaria sp. isolated from Bohai sea. Chem Nat Compd 47(6):893–895. doi:10.1007/s10600-012-0097-4

    Article  CAS  Google Scholar 

  44. Wang W, Wang Y, Tao H, Peng X, Liu P, Zhu W (2009) Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J Nat Prod 72(9):1695–1698. doi:10.1021/np9002299

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe T (2002) Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species, 2nd edn. CRC Press, Florida

    Book  Google Scholar 

  46. Wellensiek BP, Ramakrishnan R, Bashyal BP, Eason Y, Gunatilaka AAL, Ahmad N (2013) Inhibition of HIV-1 replication by secondary metabolites from endophytic fungi of desert plants. Open Virol J 7:72–80. doi:10.2174/1874357920130624002

    Article  PubMed  PubMed Central  Google Scholar 

  47. White TJ, Bruns T, Lee J, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, California, pp 315–322

    Google Scholar 

  48. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212. doi:10.3114/sim0015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yagi A, Okamura N, Haraguchi H, Abo T, Hashimoto K (1993) Antimicrobial tetrahydroanthraquinones from a strain of Alternaria solani. Phytochemistry 33(1):87–91. doi:10.1016/0031-9422(93)85401-C

    Article  CAS  Google Scholar 

  50. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Oin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. doi:10.1016/j.micres.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  51. Zheng CJ, Shao CL, Guo ZY, Chen JF, Deng DS, Yang KL, Chen YY, Fu XM, She ZG, Lin YC, Wang CY (2012) Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J Nat Prod 75:189–197. doi:10.1021/np200766d

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Passo Fundo University (UPF) by making available their excellent framework. The authors are also grateful to all the collaborators of the UPF School of Pharmacy for their receptivity and support. We thank the “Programa de Pós-Graduação em Agronomia” of UPF for lending the HPLC equipment and the “Laboratório SANI” of São Vicente de Paulo Hospital for providing the isolated MRSA. The authors wish to thank “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES); “Fundação Araucária”; and “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirlei Glienke.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonial, F., Maia, B.H.L.N.S., Gomes-Figueiredo, J.A. et al. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius . Curr Microbiol 72, 173–183 (2016). https://doi.org/10.1007/s00284-015-0929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0929-0

Keywords

Navigation